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structure such as a fuselage-tailboom-fin structure in addition
to the rotor system. As such, the analysis can also be applied
to main rotor systems. The resulting analysis has the capability
of predicting the air resonance (frequency, stabi?.ity, and mode
shape) behrvior of a coupled tail rotor/support structure system
in hover and forward flight where the rotor may be of a rigid,
teetering, gimballed, flexstrap, or partial to fulJy articulated
type. The blade aerodynamics representation including both
quasi-steady and unsteady (Theodorsen's) terms can utilize either
a uniform or a variably defined induced velocity field and up
to five types of airfoil sections. All blade and fuselage-
tailboom-fin structure characteristi-s required to adequatelyrepresent these structures in a lumped parameter form are

considered, including inertia and gyroscopic damping effects.
The analysis includes aerodynamic interharmonic blade coupling
and -,:rharmonic coupling due to support structure behavior.
The computer program developed was applied to a helicopter P
configuration representative of a UTTAS model involving a flex-\
strap tail rotor to carry out a parametric sensitivity analysis"
regarding the effects of various model components on the system
air resonance behavior. Also, the program is in a form suitable
for modification to an analysis capable of determining the
forced response behavior of the same type system.
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INTRODUCTION

The structural dynamic behavior of tail rotors has always pre-
sented difficult design problems which have not been alleviated
to any great extent in the past decade. In part these problems
have been due to the lack of suitable analytical tools capable
of representing the complicated cause and effect relationships
associated with coupled tail rotor systems. A suitable analy-
sis must be capable of representing the interaction of a tail
rotor with its aerodynamic and support environment such that
the structural dynamic behavior of a tail rotor can be ade-
quately predicted.

There are many specific reasons for the design problems asso-

ciated with tail rotor dynamic behavior. Some of the more sig-
nificant reasons are outlined and discussed in Reference 1.
Four major reasons are:

1. the difficulties in predicting the basic tail ro-
tor air resonance modes (frequencies and corre-
sponding mode shapes and associated blade motion
stability);

2. the effects of tail rotor local mounting condi-
tions on the tail rotor air resonance modes and
associated blade motion stability;

3. the effects of tail rotor fuselage-tailboom-
fin structural flexibility on the tail rotor
air resonance modes and associated blade motion
stability;

4. the nature of the harmonic and nonharmonic
forcing functions associated with the main rotor
wake, tail rotor wake, and elastic support
structure.

As noted in Reference 1, for many years the development and/or
modification of tail rotors has been acccmplished by utilizing
a fairly standard procedure. This procedure consists of
(1) a design phase in which the isolated tail rotor blades are
dosigned such that the blade natural frequencies are not coin-
cident with or vary close to any harmonics of the tail rotor
nominal rotatioial speed and (2) an extensive and costly ex-
perimental phase in which the resulting tail rotor design is
tested to ascertain its structural and dynamic integrity as
an integral part of the overall helicopter system.

8 ..
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The present inadequacies of the design phase inay not be due
only to the lack of proper consideration of the four problem
areas which have been mentioned, but are also due to restric-
tions inherent '.n exising analytical techniques. Some of the
restrictions used in various natural frequency analyses, an
example being the analysis developed in Reference 2, are the
neglect of

1. the effects of pitch-flap and pitch-lag
coupling due to mean coning and lag;

2. the nonlinear effects of large motions
due to the linearizing assumption of small
angles;

3. large pitch-flap coupling 63 and pitch-lag
coupling al;

4. blade deflection and slope time rate of change
(d/dt) effects associated with mass, inertia,
and aerodynamic characteristics;

5. control load offset coupling;

6. control system cyclic stiffness.

Most, if not all, of the above restrictions are commonly used
in most natural frequency analyses. Thus, accurate predictive
results can only be obtained for rather simple blade, blade

root, and control system designs. A more sophiscated and re-
presentative analysis than is presently available is required
to obtain accurate predictive results for complicated tail

rotor systems (e.g., a rotor system).

An analysis capable of adequately determining the structural
dynamic modal behavior of coupled helicopter/tail rotor sys-

tems should be able to determine the air resonance modal char-
acteristics of a tail rotor system without use of the above-• . noted restrictions. In addition, this analysis should ade-

quately include the effects of control system flexibility,
gearbox mounting flexibility, drive shaft torsional flexibil-

Si • . ity, and fuselage-tailboom-fin flexibility on the tail rotor

behavior. It is believed that the development of such an
analysis would beneficially modify the tail rotor develon-

=. mental procedure by significantly reducing the corrective ex-

perimental effort that has been required previously. Realiz-
ing the advantages and the applications of such an analysis,
the Eustis Directorate, U. S. Army Air Mobility Research and

Developmerit Laboratory funded the dvcalopment and application

9
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V of an analysis for investigating the modal behavior ofcoupled helicopter/tail rotor systems. This analyses willprovide a new and effective design tool for use by bothgovernment and industry in the development and modificationof tail rotors.

This report will present the overall system model configura-tions allowed, the general theoretical concepts used to de-velop the analysis, the resultant analytical expressions, andthe results obtained for a flexstrap tail rotor system withthe computer program that was developed.

"•
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PE"VELJ2,JPMENT OF MATHEMATICAL REPRESENTATION

This section of the report will first discuss the physical
characteristics of the helicopter modeled and then Gutline
the oasic mathematical concepts used to develop the theoreti-
cal representation of these characteristics. Followinq this
discussion, the mathematical representation of the helicopter
and tail rotor systems that are analyzed will be given, and
tie mathematical method by which the eigenvalues and associ-
ated eigenvectors are obtained will be presented.

THE PHYSICAL CHARACTERISTICS OF THE HELICOPTER AND
TAIL ROTOR THAT ARE MODELED

Physical Considerations Concerning Model Requirements

The development of a satisfactory analysis for the investi-
gation of the air resonance modal behavior of coupled
helicopter/tail rotor systems requires the use of a more
complex representational model than those used in existingblade frequency analyses. The total coupled system model
complexity results due to the blade model representational
requirements and the structural models necessary for the
representation of the structural support environment of a
tail rotor (i.e., flexibility of the local mounting structure,
fuselage-tailboom-fin support structure, and control system).
The necessity of a higher degree of model sophistication is
apparent upon the consideration of the physical modal behav-
i.or of coupled helicopter/tail rotor systems.

Most natural frequency analyses assume the rotor system to
be operating in vacuo, whereas in reality, the blades of a
rotor operate in an aerodynamic environment. This environ-
ment can have an appreciable effect on the blade frequencies,
mode shapes, and blade motion stability. The aerodynamic
forces and moments acting on the rotor blades alter the
steady coning, sweep, and twist distributions of the blades
and, therefore, have a significant effect on the coupling of
the chordwise, flapwise, and torsional blade motions. This
alteration of the blade deformed position due to steady
aerodynamic forces also modifies the blade motion stability
by changing the blade deflection and slope time rate of
change (d/dt) effects associated with the blade mass and
inertia characteristics. In addition to the steady aerody-
namic effects, the aerodynamic environment provides
oscillatory forces and moments acting on the rotor blades
which are a function of the vibratory behavior of the blades.
These forces and moments, besides modifying the blade

" i11
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frequency and mode shapes, alter the blade motion stability
thru the addition of aerodynamic damping. The effects of the
aerodynamic environment on the modal behavior of a rotor
system are compounded further when the rotor blades areI' subjected to a nonaxisymmetric flow field. In this case,
significant intrablade interharmonic coupling can result
(i.e., blade motion occurring at one frequency w can couple
with a motion of the same blade occurring at a frequency of
w + 0 or w - Q or both where Q is the rotational speed of the
rotor). Thus, the blade model for the development of a satis-
factory analysis to determine the air resonance modal behavior
of a rotor system must have the capability of the inclusion
of the above-noted aerodynamic effects in addition to the[ effects of the elastic, geometric, and structural properties
of the blade. Also, restrictions associated with blade models
inherent in existing frequency analyses should be ajoided.

The structural support environment of a tail rotor has a sig-
nificant effect on the air resonance modal behavior of a tail
rotor system -Iiice this environment allows tail rotor hub and
control system motion. As a result of this additional freedom
of motion, interblade interharmonic coupling (i.e., coupling
of the motion of one blade to the motion of another blade thru

L the control system and/or hub motion) and blade-fuselage
structure interharmonic coupling can occur. The necessity of
representational models for the various components of the
structural support environment can be shown by considering the
effect of each of these components on the various types of
modal behavior of a four-bladed tail rotor in forward flight
with the blades cantilevered to the rotor hub. For the basic
tail rotor case in which the rotor hub is not allowed motion
other than that corresponding to forward flight and the con-
trol system is infinitely stiff, each blade acts independently.
Thus, the air resonance eigenva]ues (frequency and stability
values) obtained for one blade can be construed as the air
resonance eigenvalues for the basic reactionless, umbrella,
forward cyclic, and backward cyclic blade motions of the
four-bladed rotor. Tne addition 3f support structure flexi-
bility will siqnificantly alter the air resonance eigenvalues
and mode shapes for some of these types of blade motion.
With the allowance of collective control system flexibility,
the umbrella Eir resonance eigenvalues and corresponding mode
shapes will not coincide with those of the reactionless and
cycli2 air resonance modes which remain unchanged. If an
anistropic control system flexibility is allowed, the back-
ward and forward cyclic air resonance eigenvalues and cor-
responding mode shapes are altered such that they are not
coincident with those of the reactionless air resonance modes
of the basic tail rotor case. Thus, for a control system hav-
ing both anisotropic and collective flexibility, there will

12
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be four times as many distinct air resonance eigenvalues,
based on blade representation, as there are for the basic
tail rotor case. Additional air resonance eigenvalues also
result which are introduced due to the consideration of the
control system representation. These above-noted effects of
the inclusion of control system flexibilities were observed
in Reference 3.

The allowance of drive shaft torsional flexibility will affect
the umbrella-type blade motions and will have a very pronounced
effect on the chordwise bending air resonance frequencies. A
possible problem area in regard to the drive shaft torsional
flexibility is the possibility that the first drive shaft-tail
rotor torsional frequency may be low enough to strongly couple
with a fuselage-tailboom-fin mode and create an instability.

In addition to the significant change in the tail rotor
chordwise modes, the drive system flexibility will modify the
umbrella-type torsional and flapwise bending air resonance
eigenvalues and mode shapes due to the coupling of blade
elastic motions.

The inclusion of tail rotor gearbox mounting flexibility may
have a significant effect on the air resonance modal behavior
of the tail rotor blades, since rotational motions of the
gearbox about two perpendicular axes in the plane perpendicu-
lar to the tail rotor shaft at the gearbox result in
translatory and rotational motions of the tail rotor hub.
Due to the gearbox rotational motions being relative to a
nonrotating shaft system and the motion of the blades being
relative to coordinate systems rotating at the rotor rota-
tional speed, the basic gearbox frequencies will couple
strongly with the blade cyclic air resonance frequencies at,
or close to, 1/rev above or below the basic gearbox frequen-
cies. In particular, if a forward cyclic air resonance mode
has a frequency roughly 1/rev below the gearbox frequency,
strong coupling will occur and significant changes in the
forward cyclic air resonance eigenvalue and corresponding mode
shapes will result. Similarly, if a backward cyclic air
resonance mode has a frequency roughly 1/rev above the gear-
box frequency, strong coupling will occur and significant
changes in the backward cyclic air resonance eigenvalue and
corresponding mode shapes will result.

Attachment of a tail rotor to a flexible fuselage-tailboom-
fin structure complicates the determination of the air reso-
nance modal and stability behavior of the tail rotor due to
the flexibilities existing in the nonrotating system. These
flexibilities will affect the cyclic and umbrella-type air
resonance modes and associated stability in a manner similar
to that noted for the control system and tail rotor gearbox
mounting flexibilities. Besides the alteration of the basic

13



air resonance eigenvalues and mode shapes associated with the
tail rotor due to fuselage-tailboom-fin structure, many
additional air resonance modes will result due to the coup-
ling of the basic frequencies of the fuselage-tailboom-fin
structure with the rotor modes. For example, for each air
resonance frequency of the fuselage-tailboom-fin structure
there exists a distinct air resonance frequency and mode
shape corresponding to the umbrella, forward cyclic, and
backward cyclic types of rotor blade motion.

The oscillatory motion of the tail rotor hub due to the
flexibility of gearbox mounting and/or the flexibility of the
fuselage-tailboom-fin structure necessitates the inclusion
of gyroscopic and Coriolis force effects which will have a
significant effect on modal and stability results. It has
been shown that the gyroscopic effects of precession are very
important when the vibratory characteristics of flexible
blades of prop-rotor systems attached to relatively flexible
lifting surfaces are being determined (Reference 4). The
importance of precession effects on the performance character-
istics of a tail rotor as well was indicated in Reference 5
where it was noted that 1/3 of the total thrust required from
the tail rotor can be attributed to that necessary to overcome
the precession due to the yaw rate of a helicopter.

An analysis for adequate determination of the air resonance
modal behavior of coupled helicopter/tail rotor systems must
be based on a system model capable of including the effects
of the tail rotor local support structure and fuselage-
tailboom-fin structure flexibilities. The overall system
model configurations allowed in the development of this
analysis consist of several basic model components which when
properly sequenced define the system of interest The basic
components for which mathematical models are required can be
categorized as:

1. the tail rotor blade structure;

2. the tail rotor hub restraints;

3. the tail rotor control system;

4. the tail rotor control rod configuration;

5. the fuselage-tailboom-fin structure;

6. the tail rotor gearbox mounting flexibilities;

7. the tail rotor drive shaft torsional flexibility.

14



The analysis for the computer program has the capability to
model each of these helicopter system components individually
or in combination with other system components. When all of
the components are included, the coupled and interdependent
modal behavior for the total system depicted in Figure 1 may
be predicted. A thorough description of the modelling of the
individual system components is given in the followi.,g sections.

Tail Rotor Blade Model

The basic model of the blades comprising the tail rotor allows
for the inclusion of all blade characteristics believed to be
significant. These are as follows:

1. arbitrary orientation of the blade shear center
axis by precone and presweep distributions;

2. arbitrary chordwise location of the blade shear
center axis (axis about which the blade cross
section will rotate when perturbed);

3. localized rigid offsets of shear center axis in
the flapwise, chordwise, and spanwise directions;

4. arbitrary variable twist distribution including
collective about the blade shear center axis;

5. arbitrary mass distributio., and chordwise, flap-
wise, and torsional inertia distributions;

6. arbitrary chordwise location of the center of
mass relative to the blade shear center;

7. arbitrary chordwise, flapwise, and torsional
bending stiffness distributions and inclusion of
centrifugal stiffening effects;

8. localized torsional spring-damper unit application
about the flapwise, chordwise, and spanwise
directions;

9. arbitrary structural damping coefficient;

10. gravitational perturbation moment effects;

11. arbitrary chordwise location of blade aerodynamic
center axis relative to blade midchord;

12. arbitrary variable chord length distribution;

15
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V
13. aerodynamic effects including aerodynamic

damping and Theodorsen's unsteady aerodynamic
effects;

14. up to five different airfoil sections along blade
span with the aerocynamic coefficients determined
from tables of aerodynamic coefficients versus
angle of attack and Mach number.

A lumped parameter approach to the modelling of the blades is
used to represent the above allowed blade characteristics.
Up to 25 blade stations can be utilized to represent these
various blade properties.

In addition to the modelling of thei blade properties, discon-
tinuities such as hinges and concentrated control force inputs
must also be considered. Thus, the program considers two
basic types of rotor systems (1) a partially to fully articu- V
lated tail rotor and (2) a flexstrap tail rotor). Through
proper program control all types of commonly used rotor
configurations can be represented including articulated, rigid,
teetering, flexstrap, etc.

A fully articulated tail rotor requires that the blades have a
flap hinge, lead-lag hinge, and pitch bearing as well as a
control rod attachment restraint. The representation for a
lead-lag hinge, if required, is accomplished by use of a
localized torsional spring-damper unit (an allowed blade
characteristic) having the required torsional stiffness and
damping values. The axis of the local torsional spring-damper
unit (normally, the unit acting about the local flapwise
direction is used) should coincide with the axis of the lead-
lag hinge. This alignment is achieved by proper location and
orientation (thru the use of local precone, presweep, and
pretwist angles) of the section containing the lead-lag hinge.

• •The representation of a flap hinge, if required in the blade
model, is accomplished in either of two ways. The first way
is to represent the flap hinge in a manner similar to that
used for representing a lead-lag hinge. That is, a localized
torsional spring-damper unit (normally, the unit acting about
the local chordwise direction) may be ased with the condition
that the axis uf the local spring-damper unit should coincide
with the axis of the flap hinge ThE alternate way is to
analytically represent the flap hingE Iby considering a dis-
continuity in the oscillatory flappr;c motion to cccur at the
flap hinge location and the condition that the local oscilla-
tory flapwise moment must be zero at the hinge. For example,
the oscillatory flapping motion of a rotating rigid blade1k attached to a rigid rotor hub by a flap hinge can be consid-
ered to be a flap angle discontinuity at the flap hinge. This

17



method of representing a flap hinge does not allow inclusion
of external damping of the flap hinge motion. The analysis
for both of these flap hinge models is included in the com-
puter program to allow the user the choice of the most

k suitable model for particular program applications.

The representation of a pitch bearing, if required, is accom-
plished by considering a discontinuity in the oscillatory
pitching motion to occur at the pitch bearing and the con-
dition that the local oscillatory torque at the pitch bearing
must be zero. The concept of a pitch angle discontinuity is
similar to that of a flap angle discontinuity except that it
occurs about the pitch bearing axis. The control rod effects
on an articulated blade, if they are to be included, are
represented by considering the control rod to apply an oscill-
atory torque (torque discontinuity) to the blade shear center
axis at the effective spanwise application point of this
torque. The torque discontinuity is normally considered to
be applied outboard of the pitch bearing location.

The models for the flap and lead-lag hir.ges can represent
large pitch-flap coupling 63 and pitch-lag coupling a1 ef-

fects. This is possible since the flap and lead-lag hinge
axes may be placed in any desired orientation by the use
of local section precone, presweep, and pretwist angles.
An alternate model for representing pitch-flap and pitch-lag
coupling was also include,] in the program analysis. In this
model the flap and lead-lag hinges are taken to act about
the local chordwise axis and flapwise axis, respectively,
with the required coupling of blade motions taken into ac-
count on specification of pitch-flap and pitch-lag coupling
factors.

The other basic type of rotor system is that necessary for
the consideration of a blade attached to a tail rotor hub by
means of a flexible strap. In this case, flap and lead-lag
hinges and a pitch bearing do not exist on the blade.
Instead, the flapwise, chordwise, and torsional motions
inboard of the effective pitch horn attachment point are
allowed by the flexibilities inherent in the strap. While
these flexibilities can be repr •sented by the basic blade
model elastic properties, the relationship between the elas-
tic blade motions is also dependent upon the oscillatory
forces and r.oments in three mutually orthogonal directions
acting on the blade shear center axis due to the restraint
provided by the control rod.

For a flexstrap blade, the control rod is assumed to be
attached to a pitch horn which is described by means of its
length and its flexibility and orientation in three mutually

18



S~orthogonal directions. The oscillatory forces and moments
acting on the blade shear center axis at their effective

application point can be expressed in terms of the pitch horn
properties, local perturbation (oscillatory) slopes and
deflections at the blade shear center axis, and the oscilla-
tory deflections of the control rod attachment point to the
pitch horn. The control rod attachment point deflections are
considered as discontinuity quantities. The pitch-flap c3 and

3
pitch-lag ai coupling are automatically included in this model
and are directly related to the flexstrap and pitch-horn
representation.

In the case of a flexstrap blade, the control rod does not
remove all of the oscillatory blade torque; therefore, a sig-
nificant amount of oscillatory flapwise, chordwise, and
torsional elastic deflection of the strap occurs. Because of
the elastic couplings, *he flexstrap must be represented by
more lumped parameters per unit of length than is required to
properly represent the rest of the blade. Also, a sufficient
knowledge of the mean orientation precone, presweep, and pre-
twist of the flexstrap is required sine the elastic coupling
is very dependent upon the rapidly changing orientation of the

Tail Rotor Configuration Models

Basically, the tail rotor configuration models considered in
the development of representational analysis may consist of
any number of flexible blades which can be arbitrarily located
azimuthally. The computer program, however, was limited to
rotor configurations consisting of identical flexible blades
by the analytical coding, rotor configurations consisting of
four or less blades arbitrarily spaced azimuthally or of any
number of blades equally spaced azimuthally by variable
dimension restrictions, and to rotor configurations consisting
of any nu..iber of blades equally spaced azimuthally by addi-
tional variable dimension restrictions. These tail rotor
configuration program limitations can be easily removed by
increasing variable dimensions where required and modifying
the analytical c~-iing. The tail rotor configuration models
allow arbitrary oL..entation and amplitude of the gravitational
field and the rotor hub flight velocity where these orienta-
tions are specified relative to the azimuthally located
reference blade position. The required analysis was developed
for the several different types of rotor configurations that
can be represented by the program. For purposes of discus-

U sion, the blades of all tail rotor configurations can be
considered to be cantilevered to a rigid rotor hub which may
have degrees of freedom relative to its attachment to the
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rotor shaft. The five rotor configurations that can be
represented within the program axe:

1. a rigid rotor that is represented through the basic
blade model (i.e., without hinges, bearings, and
control rod attachments);

2. a partial to tully articulated rotor constructed

from the articulated blade model;

3. a flexstrap rotor constructed froin the flexstrap
blade model;

4. a gimballed rotor (more than two blades) constructed
from the articulated blade model;

5. a teetering rotor (two blades only) constructed from
the articulated blade model.

The first three types of rotor models listed above require the
rigid rotor hub to be cantilevered to the rotor shaft. The
gimballed rotor model assumes the rigid rotor hub to be
attached to the rotor shaft such that it is free to rotate
about two mutually orthogonal axes rotating in the plane
perpendicular to the rotor shaft at the rotor hub attachment
point. The teetering rotor model assumes the rigid rotor hub
to be attached to the rotor shaft such that it is free to
rotate about one axis rotating in the plane perpendicular to
the rotor shaft at the rotor hub attachment point.

Model of the Tail Rotor Control System

The model of the tail rotor control system is based upon the
assumption of a swashplate-type control system. The main
component of the swashplate control system model, shown in
Figure 2, is represented by a flexible ring having uniform
mass distributizn around the circumference and consisting of
upper and lower portions. Both portions of the ring are
allowed to translate along the rotor shaft axis and rotate
about two mutually orthogonal axes perpendicular to the rotor
shaft axis. The upper portion of the ring also rotates with
the blades about the rotor shaft axis. The lower portion of
the ring, which does not rotate with the blades, is supported
by a finite number of supports which have arbitrary linear
stiffness and damping characteristics. These supports may
also be arbitrarily located azimuthally around the ring so
that an azimuthal distribution of control stiffness can beS • represented. The collective base to which the ring supports

are attached is assumed to be attached to the tail rotor
gearbox by a linear support having an arbitrary effective

20
, !



control
rod Zfc

representative • 
c

helicopter blade

uniform• _• elastic
•,• • •ring

cyclic
spring-damper

unit

Xfc

effective
attachment

point

collective
base plate

collective
spring-damper

unit
I y///•///O-o- g•-- grund

Figure 2. Swashplate Control System Model and Fixed
Coordinate System for Counterclockwise Rotating
Rotor.

hS21



stiffness and damping value. The forces parallel to the tail
r tor drive shaft axis acting on the swashplate from the con-
trol rods are passed through the swashplate control system
model and applied to the tail rotor gearbox. Thus, by varia-
tion of the stiffness and damping characteristics and
azimuthal location of the supports involved, any degree of
anisotropic support of the swashplate control system can be
obtained.

Tail Rotor Control Rod Model

The inclusion of the tail rotor control rods is required when
an articulated or flexstrap blade model is involved. in
either case, the control rods are allowed to have arbitrary
axial stiffness and damping characteristics and are assumed to
be connected to the blade pitch horns and swashplate (or
ground, if no swashplate) by swivel ball joints such that the
control rods cannot carry moments or transverse loadings. For
an articulated blade, the control rod is assumed to only apply
a torque to the blade.

The modeling of the control rod for the flexstrap rotor system
is, in general, much more ccmplex than that which is required
for the articulated rotor system. The primary reasons for the
increase in model complexity are: (1) the large angularity
of the control rod due to the radius at which it attaches to
the blade and (2) the strong elastic couplinq created by the
control rod in the flexstrap flapwise, chordwise and torsional
degrees of freedom. In Fddition, due to the angularity and
offset of the control rods, blade motions in the inplane and
flapwise directions are coupled through the control system.
This results in a much more highly coupled system than is the
case for an articulated rotor system. The stiffness and damp-
ing characteristics of the control rods are also included with
those associated with the swashplate representation, discussed
previously, in order to adequately represent the cyclic and
collective stiffness and cyclic and collective damping acting
on the blades due to the control system and control rods.

Fuselage-Tailboom-Fin Model

The basic fuselage-tailboom-fin model allows for the inclusion
of all structural and aerodynamic characteristics believed to
be of significance. These characteristics are essentially
those which were listed for the tail rotor blade model. Since
the fuselage-tailboom-fin structure is not rotating, as was
the case for the blades, the representation of the mass and

S~inertia effects and aerodynamic effects on the fuselage-

tailboom-fin structure differs from the representation of
"these effects on a blade. For example, the mass and inertia
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distribution on the fuselage-tailboom-fin structure does not
provide centrifugal stiffening of elastic sections or damping
effects. Also, the aerodynamic representation for the
fuselage-tailboom-fin structure does not include time rate of
change terms such that intrafuselage interharmonic coupling
does not occur (i.e., harmonics of fuselage motion do not
couple). For proper aerodynamic representation of this model,
the aerodynamics for the fuselage and tailboom are based on

* blockage (flat plate drag) effects; whereas the fin aerodyna-
mics are similar to that utilized for the blades. As an
alternate to the use of aerodynamic coefficient tables or a
complicated series representation, the aerodynamic coefficients
can be based on a series representation (linear aerodynamics)
for NACA 0012 airfoil. A horizontal stabilizer can be repre-
sented as an aerodynamic station on the shear center axis of
the tailboom or fin. The magnitude and orientation of the
flight velocity vector acting on the fuselage-tailboom-fin
structure can also have an arbitrary orientation.

The fuselage-tailboom-fin structure is represented by a
lumped parameter form similar to that used for the blade
representation. This lumped parameter form is used to repre-
sent the entire support structure, includinq the tail rotor
gearbox mounting flexibilities and the rotor shaft from gear-
box to rotor hub attachment point. Up to 15 sections may be
used to represent the entire support structure.

Tail Rotor Gearbox Mounting Model

The tail rotor gearbox mounting flexibility is represented by
utilizing the localized torsional spring-damper capabilities
of the fuselage-tailboom-iin model. In particular, localized
torsional spring-damper units with arbitrary torsional stiff-
ness and damping characteristics are applied about two
mutually orthogonal axes at the gearbox attachment to tne
fuselage. The specific orientation of the two axes relative
"to the fuselage-tailboom-fin structure fixed coordinate system
is accomplished through the use of geometric angles. By
variation of the stiffness and damping characteristics of the
two torsional spring-damper units, any degree of anisotrophy
in tail rotor gearbox mounting can be represented.

Tail Rotor Drive Shaft Torsional Flexibility Model

In representing the drive shaft torsional flexibility, the
drive shaft is assumed to be constrained in torsion at the
main rotor transmission. The model of the torsional charac-
teristics of the drive shaft system was formulated by
considering a localized torsional spring at the root of each
blade whose inplane flexibility is equivalent to the drive
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shaft torsional Ulexibility. In addition, the blade chordwise
moments at the hub are not allowed to provide torque to the
shaft, and thereby to the fin, since the torque on the rotor
shaft is removed by the transmission. This torsional spring
model is considered independent of the blade model and should
not be construed to be modeled as part of the basic blade
model.

THEORETICAL MATHEMATICAL CONCEPTS USED IN THE PROGRAM
FORMULIZATIONS

Due to the complexity of the model required to represent the
tail rotor systems previously outlined, several basic
theoretical mathemvatical techniques were used so that the
formulations of all final governing equations would be

1. Laplace transformation techniques

2. transfer matrix procedures

3. Fourier analysis techniques

4. coordinate systems and transformation relationships

5. Dirac delta function representations

6. application of boundary conditions

Laplace Transformation Techniques

The application of the Laplace transformation techniques
provides an effective means of converting time differential
equations having first and second order time derivative terms
as well as periodically varying coefficients to an algebraic
form which can be efficiently manipulated to obtain the solu-
tion eigenvalues and eigenvectors. Generally, because of the
nature of the problems being considered, the resulting
algebraic equations involve complex variable notation; there-
fore, the Laplace transform variables must be allowed to be
complex. In addition, a characteristic of the Laplace trans-
formed equations can be used to develop the additional
equations necessary to define the harmonically shifted
variables required for the consideration of interharmonic
coupling due to the control system and/or rotor hub motion and
periodically varying aerodynamic coefficients. K
All of the real-time equations required in the development of
tail-rotor analysis were altered to a form in which the 5

variables involved are expressible as a function of time in
exponential form. These equations were then subjected to the

24



k 
g

application of Laplace transformation techniques. In addition
to the standard defin" t'on of the Laplace transform

(s)= LT(f(t)) =f estf

several other Laplace transform theorems were used: i.e.,P (1) the superposition theorem

LTn An fn(t)J = n An LTlfn(t)J

where A are constants; (2) the basic differential theoremn

LT(df(t)/dt) = sy(s)

assuming the quiescent initial conditions; (3) the extended
differential theorem

L LTIdnf(t)/dtn= snF(s)

assuming quiescent initial conditions; and (4) the frequency
shift theorem

L T eatf(t) = F(s-a)

The latter theorem :ovides the means of obtaining the addi-
V tional equations defining the harmonically shifted variables

required when interharmonic coupling is allowed. Information
Sconcerning Laplace transform techniques is presented in [
References 6, 7, and 8.

Transfer Matrix Procedures

The standard transfer matrix procedure consists of the
following:

1. a modeling procedure in which the distributed
structure properties are converted to a lumpedi o parameter form representing the flexible structure

as (a) uniform massless elastic Leam sections
(centrifugally stiffened, if exposed to constant
rotation) and (b) point masses, inertias, geometric
bends, torsional stiffness and dampinq, and shear
center axis offsets located at the ends of the
elastic beam section, and
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2. a process in which the transfer matrices associated
with successive characteristics of the modeled
flexible structure are combined to form the transfer
or associated matrix relating the shears, moments,
slopes, and deflections at a position on the flexible
structure to those occurring at the end of the
flexible structure at which the process was
initiated.

The lumped parameter method of modelina a flexible structure
is not a prerequisite for the application of transfer matrix
procedures, but it is practical and convenient and is
generally used.

The state variables representing the shears, moments, slopes,
and deflections on one side of the lumped parameter blade
representation can be related to the state variables on the
other side by equatiors which can be written in matrix form

as {S(t))- = [G]{S(t)}+ where (G) is a real-time transfer
matrix which may include time differential operators. Appli-
cation of Laplace transforms to the equations prior to
matrix representation with the assumption of quiescent

initial conditions such that d/dt and d2/dt operators are
replaced by s and s , respectively, yields algebraic equa-
tions which can be written in matrix form as {S(s)} =

+[G(s)]{S(s)} where [G(s)] can be denoted as a Laplace trans-
formed transfer matrix. If the real-time state variable
equations are premultiplied by e ik~t where k is a positive or
negative integer, Q is the rotor rotational speed (rad/sec),
and t is time (sec) prior to the Lapla,7e transformation
application, the resulting transformed equations can be

written in matrix form as . The k subscript

denotes that the Laplace transform variable s has been
replaced by s-ikQ (k frequency shifted). This matrix equation
defines the relationship of state variables at a frequency
shifted kM relative to that specified by the imaginary part
of s. Generally, any Laplace transform equation can be fre-
quency shifted by replacing s with a frequency shifted Laplace
transform variable as represented by the shifting theorem.

With the inclusion of aerodynamic forces acting on a blade,
the real-time state variable equations for the transfer across
an aerodynamic application point involve time varying coeffi-
cients in addition to d/dt operators. The time varying
coefficients can be expressed by a Fourier series :A

L - - 26 j



Sin25t

representation in the exponential form f(t) = • an e .
n=-0

This allows the Laplace transformed equations to be written in

the matrix form S} = Sn where is the trans-

formed transfer matrix specifying the contribution of the n
frequency shifted state variables to the zero frequency
shifted state variables due to aerodynamic considerations.
This matrix equation can be frequency shifted to the matrix

form iSkJ-= [Lkn]jSnJ+ where L•kn] is the transformed

transfer matrix specifying the contributions of the n fre-
quency shifted state variables to the k frequency shifted
state variables due to aerodynamic considerations.

The Laplace transformed transfer matrices for successive
lumped parameter characteristics of a structure can be com-
bined to form the associated matrices relating the state
variables at a position on the structure to the state varia-
bles at the initial end of the structure. The k frequency
shifted state variables just beyond the jth lumped parameter
characteristic can be expressed relative to the initial n

F frequency shifted state variables in the matrix form
• , { }J- = •k ~j {n}0 k n]j

lSkf = L[n]where the are associated[Nk] fi, [Wk-, n]

transfer matrices.

The associated transfer matrices for the jth nonaerodynamic
lumped parameter characteristic can be related to those for
the (j-l)th characteristic by the expression

[kn]j = [6k] [I n](I)

If an aerodynamics lumped parameter characteristic is involved,
the sujcessive associated transfer matrices can be related by
the expression

B = (2)k n] ' = -00 [, k][f,n

These two associated transfer matrix relationships can be !
verified by replacing j in the general definition of the state
variables after the jth characteristic in terms of the initial
state variables by j-l and substituting the resulting expres-
sion into the forms of the expressions for transfer across a
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nonaerodynamic characteristic and an aerodynamic characteris-
tic, respectively. Equation (2) represents the mechanism of
intrablade interharmonic coupling which will occur for a
rotating blade experiencing time varying aerodynamic loading.
With the initial lumped parameter characteristic being other
than an aerodynamic characteristic, the initial associated

transfer matrix arrays are defined by = and

L= for k 34 n. If the structure is in a constant

aerodynamic environment such that = [ for k 1 Z

and all values of j denoting aerodynamic application points,
interharmonic coupling will not occur, with the result that

B:j= tO! for k 4 n, as can be seen by Equations (1) and

f (2).

In addition to the basic formulation of the Laplace trans-
formed transfer matrix representation of a structure, the
effects of the blade discontinuities discussed in the tail
rotor blade model presentation must also be considered. The
general definition of the k frequency shifted state variables
just beyond the jth lumped parameter characteristic can be
expressed relative to the initial n frequency shifted state
and discontinuity variables in the matrix form

{Sk =n~oL[k,n]{Sgn} - {k,n}1ln

{kn}An - '1kjn

In this expression, n and are the

Laplace transformed discontinuity column arrays, just beyond
the jth lumped parameter characteristic, multiplyinj the
r eneral n frequency shifted blade discontinuity variables

SI i "n' and Y3 respectively.t' nn
The discontinuity column matrices are introduced by consider-
ing the state variables on crossing a discontinuity to be

related by the form = -l WT. which is the

relationship for the first discontinuity. For compatibility
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with Equation (3), if j is less than the value of the lumped
parameter index for the lumped characteristic just beyond

j J3
which the first discontinuity occurs, = for all

values of k and n. If j is the value of the lumped parameter
index for the lumped characteristic just beyond which the

first discontinuity occurs, = 0 for k 3 n and

,k = .If j is greater than the value of the lumped

parameter index for the lumped characteristic beyond which

the first discontinuity occurs, is determined byf~,nl

application of the relationships specified by Equations (1)

and (2) with {Ek,n} replacing [kn] The {Ek,n} and

,n discontinuity column arrays are represented in a

similar manner.

The use of Laplace transforms in conjunction with the trans-
fer matrix procedures, although simple in concept, is thought
to be a fairly unique approach to representing the behavior
of a structure. More detailed general information regarding
the application and use of transfer matrices may be found in
Reference 9.

Fourier Analysis Application

Fourier analysis techniques are utilized in the predictive
program to describe the periodically varying coefficients in
the representation of the blade aerodynamic forces and to
develop suitable equations describing the dynamic characteris-
tics of the swashplate.

As previously mentioned, the equations relating the stateJ •variables on one side of a lumped aerodynamic load point to
the state variables on the other side may include periodically
varying coefficients due to a nonaxisymmetric flow field
environment acting on the blade. The periodically varying
coefficients can be expressed in the exponential Fourier

CO int-
series form f(t) = [ an e where the Fourier harmonic
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coefficients can be defined by the definition
a = (1/2w) f(t)e intd(t) An alternate definition for

0
NAS -inij

harmonic coefficients is an (1/NAS) [ f(4'j)e , where

4. = 2w (j-l)/NAS, NAS is the number of uniformly spaced azi-

muthal steps in one revolution, and f(ip) is the value of the

function of interest at P.. The highest harmonic coefficient

a which can be determined by this method is defined bymax

max = NAS/2-1. This latter method is employed to obtain the
harmonic Fourier coefficients of the periodically varying
aerodynamic coefficients of the reference blade. The
periodically varying aerodynamic coefficients of additional
identical blades are represented in terms of reference blade

0 in(Qt+4 m)
coefficients by the general form fm(t) = ae

n=-oo
where *m is the angle between the mth blade and the reference

blade. If the mth blade is not identical to the reference
blade, the above expression is valid if the an values for the

"reference blade are replaced with similar values for the mth
blade, based upon the periodically varying aerodynamic coeffi-
cients of this blade as it rotates from 0 (reference

blade position) to •j = 2n (NAS-I)/NAS.

An additional use of Fourier analysis techniques is required
to obtain the equations of motion of the control (swashplate)
system. The time t and azimuthal 0 dependent variables in the
swashplate control system governing equations of motion are
converted to a single dependency on time by using relation-
ships such as

2w .

v (t) =(1/2wr) i(t e dO (4)

which corresponds to the definition

V(e,t) = v,(t)ei£0 (5)

where the v variable utilized as an example corresponds to a
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swashplate displacement variable. By multiplying all initial
-ike

swashplate equations of motion by e de and integratincT over
6 from 0 to 27T employing conditions of periodicity, complex
variable ordinary differential equations result relating the
£th harmonic terms (harmonics with respect to 0 dependency).
Use of Equation (4) and the Dirac delta function allows the
determination of the applied force and moment loading acting
on the swashplate ring in terms of the ring displacements and
rotations at the spring-damper unit application points and
the forces applied through the control rods. The use of
Fourier analysis enables the development of the equations of
motion in a form suitable for application of Laplace transfor-
mation techniques to obtain the final control system equations
of motion compatible with the blade and fuselage-tailboom-fin
related equations. Additional information regarding Fourier
analysis techniques may be found in References 7 and 8.

Coordinate Systems and Transformation Relationships

The development of the analytical representation of a tail
rotor attached to a local support structure and fuselage-
tailboom-fin structure and the boundary condition relation-
ships between various system components is based on the
coordinate systems required to specify location and orienta-
tion of various components and system variables. A discussion
of the primary coordinate systems provides a necessary
background for the discussion of the analysis developed to
represent the system behavior and provide the final governing
matrix equation which allows solution for the system eigen-
values and associated eigenvectors. The primary coordinate
systems to be discussed will be those pertaining to the blade,
swashplate and fuselage-tailboom-fin structure, including the
relationship between these coordinate systems at the drive
shaft-hub interface. The subcoordinate systems for repre-
senting the control rod, pitch horn, gravitational field and
free-stream velocity orientations will not be discussed
herein, but are defined in the computer program documentation
related material.

i Most of the coordinate system orientations are dependent upon
the direction of rotation of the tail rotor, and as such must
be defined in a general sense. The basic rectangular carte-
sian coordinate systems associated directly with the tail
rotor blades consist of a fixed (nonrotating) shaft coordinate
system zeferenced to the first blade at t = 0, a rotating
shaft coordinate system for each blade and a rotating local
blade coordinate system for each section of each blade. The
fixed shaft coordinate system has its origin at the intersec-
tion of the unperturbed shaft centerline and the rotor disc
plane of the unconed, untwisted, and unswept blades. The disc
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Figure 3. Fixed Shaft Coordinate Systems for
Two Directions of Rotor Rotation.

plane is perpendicular to the unperturbed shaft centerline.
The x-axis of this coordinate system lies in the disc plane
and is perpendicular to the forward velocity of the helicop-
ter in level forward flight such that it coincides with the
spanwise axis of the unconed, untwisted, and unswept blade in
the advancing blade position. This axis is positive directed
away from the shaft centerline. The x-axis also denotes the
azimuthal reference blade position. The z-axis coincides with
the centerline of the sb ft and is positive in the direction
of the rotor rotational velocity vector. The y-axis lies in
the rotor plane and is mutually orthogonal to the x and z axes
such as to constitute a right-handed cartesian coordinate
system. The fixed coordinate system (xf,yf,zf) is depicted

in Figure 3 for two directions of rotational velocity. The
* yf-axis has not been shown parallel to the forward velocity H

nor the zf-axis perpendicular to the forward velocity since

the rotor plane may be skewed with respect to the forward
velocity vector. For an unconed, untwisted, and unswept blade
at the reference position, the yf-axis is parallel to~the

blade chord with the leading edge ahead of the x f-axis in the

positive direction of the yf-axis. In addition, a right-

( handed rotation about the x.-axis results in a positive angle ,A
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of attack of the blade airfoil.

The rotating shaft coordinate systems, one for each blade,
have the same origin and z-axes as the fixed shaft coordinate
system, but their x and y related axes in the basic rotor
plane are rotating about the z f-axis with a rotational speed Q.

The rotating shaft coordinate systems have their x-axis along
the blade spanwise axis in the unconed, untwisted, and unswept
position and can be related to the fixed shaft coordinate
system by the coordinate transformation

rm os(Pt+m) sin(Qt+m 0 fS3rm -sin(ft+0m cos(ft+ým 01 J 6

[rmJ m
IF rmi L 0 0l IFf)

where 2t and m are as defined previously and ', 3, and • are
Sunit vectors with rm subscripts denoting the rotating shaft

coordinate system for the mth blade and f subscript denotinqI the fixed shaft coordinate system. The rotating shaft coordi-
nate system (xrmYrm 'zrm) for the first blade relative to the

fixed shaft coordinate is depicted in Figure 4 for the two
directions of rotation.

The rotating local blade coordinate systems of each blade are
located in the local blade seccions in their mean deformed
position. In the local blade -oordinate system, the x-axis is
along the local shear center axis of the blade in the mean
position and positive outboard, the y-axis is along the local
chord of the blade in the mean position and positive toward
the blade leading edge, and the z-axis is mutually orthogonal
to the x and y related axes such as to constitute a right-
handed coordinate system. The blade local coordinate system
(XbmybmZbm) is obtained from the associated rotating shaft

coordinate system by performing three orthogonal rotations:
0, 0, and ' in consecutive order where

corresponds to local presweep in the direction of
rotor rotation,

0 corresponds to local precone rotation about the V
preswept yrm-axis, and

T1 corresponds to local pretwist and/or collective angle
F of attack rotation about preswept and preconed

x -axis.
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SFigure 4. Rotating and Fixed Shaft Coordinate Systems
• for Two Directions of Rotor Rotation.

The relationshLp between the blade local coordinate system and
its associated shaft rotating coordinate system is depicted
in Figure 5, which also includes the orientation of the Laplace

Stransformed state variables which act in the rotating local
blade coordinate system and are defined as follows:

ux, uy, uz are the Laplace transformed blade deflec-
tions in the blade local x, y, and z direc-
tions, respectively,

NY, V7, V are the Laplace transformed axial force,
chordwise shear force, and flapwise shear
force in the blade local x, y, and z direc-
tions, respectively,

Tx, Ty, Tz are the Laplace transformed torsional bend- K
ing slope, flapwise bending slope and chord-
wise bending slope oout the blade x, y, and
z directions, respectively, and IS

T, My, RE are the Laplace transformed torsional moment,

flapwise bending moment, and chordwise
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moment about the blade local x, y, and z
directions, respectively.

The relationship between the two coordinate systems is repre-

sented by the coordinate transformation

ibm C (DCo S(D Co -sE) rmbm rf
Ib-m= S CT + Cd. SC, ST 0D CT + Sb SO ST CO ST j rm' (7)

Fbm LSD ST + Crr SC CT -C4 ST + S# $E CT CE CT Ir

where a short form of denotinq the sine and cosine functions
has been utilized (e.g., SD represents sing and CD represents
cosey. Since the transfer matrix technique relates the blade
deflections, slopes, forces, and moments along the blade
relative to its local coordinate system, the transformation
can be used to obtain blade state variables in the basic rotor
or disk plane.

The rectangular cartesian coordinate systems required for the
representation of the basic swashplate control system consist
of a fixed coordinate system and a rotating coordinate system
corresponding to each blade. The fixed swashplate coordinate
system has the same orientation in space as the fixed shaft

* coordinate system, but the origin of the swashplate coordinate
system is on the shaft axis where the plane of the swashplate
intersects it. The swashplate fixed coordinate system
(xfc,Yfc,Zfc ) for a counterclockwise rotating rotor was

depicted on Figure 2. For a clockwise rotatina rotor, the
fixed coordinate system y and z related axes in this figure
Swould change direction. The rotating swashplate coordinate

systems have the same orientation in space as the rotating
shaft coordina'.e systems for the blades, but they have their
origin at the origin of the fixed swashplate coordinate system.
The rotating swashplate coordinate systems (xrcy,Y cZrc) can

Sbe related to the fixed swashplate coordinate system
(XfcYfcZf) by the transformation

[ ~-_
I cos (t+%m) sinr(Ct+m) 0 1fc

-Ic = -sin (,t+4m) cos('t+fc (8)

S0 0 1 f
tri L f 0
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where the transformation array is identical to that of
Equation (6).

The rectangular cartesian coordinate systems required for the
representation of the fuselage-tailboom-fin structure parame-
ters consist of a fixed coordinate system and local coordinate
systems which are conceptually similar to the fixed and local
blade coordinate systems, except that the local fuselage-
tailboom-fin structure coordinate systems are not rotating.
The fixed coordinate system is a reference coordinate system
with its origin on the shear center axis at the nose of the
fuselage. For convenience, the x-axis of the fixed coordinate
system is taken to be parallel to the forward velocity of the
helicopter in level forward flight, positive aft; the y-axis
is taken to be perpendicular to the x-axis and in the vertical
plane of the fuselage (positive toward top of helicopter);
and the z-axis is mutually orthogonal to the x and y related
axes such as to constitute a right-handed coordinate system.
The fixed fuselage-tailboom-fin structure coordinate system
and examples of local fuselage-tailboom-fin structure coordi-
nate systems are shown in Figure 6. It should be noted that
the tail rotor shaft is treated as part of the fuselage-
tailboom-fin structure.

The local fuselage-tailboom-fin structure coordinate systems
are obtained by application of the geometric angles ý, 0, and
T in the same manner as in the rotating local blade coordinate
systems. Thus, the relationship between the local structure
coordinate systems (xs,Yszs) and the fixed structure coordi-

nate system (xfsYfszfs) is represented by matrix Equation

(7) with the bm and rm subscripts replaced by s and fs sub-
scripts, respectively. The matching of conditions at the
interface of the tail rotor shaft and the rotor hub requires
a defined relationship between the local fuselage-tailboom-
fin structure coordinate system at the end of the tail rotor
shaft and the fixed nonrotating blade reference coordinate
system. The orientation of the local structure coordinate
system at the end of the tail rotor shaft is accomplished .
through the use of the D, 0, and T angles at that position.

The relationship between the two coordinate systems used for
the matching of boundary conditions is that at the hub-shaft !j

interface point, in terms of unit vectors

5 kf
• ,"s f
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System Required at Shaft and Rotor Hub
Interface.
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Thus, the required relationship between the fuselage-tailboom-
fin structure coordinate system and the fixed shaft coordinate
system at the hub-shaft interface is as depicted in Figure 7
for the two directions of rotor rotation. This coordinate
system relationship, which is dependent upon the direction of
rotor rotation, must be satisfied irrespective of whether the
tail rotor drive shaft is modeled on the positive or negative
Sf-axis side of the tail rotor hub.

/ Dirac Delta Functions

The governing differential equations of motion for the rin9
of the swashplate control system consist of equilibrium,
stress-strain, and strain-displacement equations. These
equations involve variables which are a function of 0, the
azimuthal location of a point of interest on the ring relative
to the xfc-axis of the ring, and time t. Three of the varia-

fc
bles involved are the applied loading distributions (1,t),a(O,t), and ca(,t) (see Figure 9), which are defined as the

shear loading on the ring parallel to the zf-axis of th% ring,

the torque loading on the ring about the circ-imferential ring
axis, and the bnigmoment lodn on the rigabu aloa
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radial axis, respectively. In the control system configura-
tion, these loadings are applied at discrete points on the
ring by the control rods and the linear spring-damper supports.
As noted in Figure 2, the applied forces from the control rods
may be offset from the ring radius, as are the forces applied
by the set of linear spring-damper support units.

A standard method of treating discrete loading points in an
elastic structure is to utilize a Dirac delta representation
of the form 6(e-60) where this multiplier specifies that the
function being multiplied does not exist until 6 > 60" In

application to the definitions of the applied loading runc-
tions above, two forms are involved. For the control rod
contributions to the applied loadings, 6(6-Qt- m) is used,

and for the spring-damper support unit contributions to the
applied loadings, s(o-xj) is used. Xj is the azimuthal angle

of the jth spring-damper support unit relative to the x f-axis

of the control system. The Dirac delta function 60-e is

defined such that

(21T
J f(0) M (6-60) Rd6 = f (0) (9)0 0

where e0 is an arbitrary angle and R is the radius of the

swashplate ring. This expression is also valid if the func-
tion is of the form f(O,t) where the variable 0 is independent
of the variable t. The form of Equation (9) results when
Equation (4) is utilized to obtain the Fourier harmonic
coefficients of the exponential Fourier analysis form of the
loadings acting on the swashplate ring (Q,(t), 8(t), and
P W t) and thus enables the definition of these cct.fficients

as a function of Xj and ým as required.

Application of Boundary Conditions

The equations, used to construct the final governing matrix
equation whose solution yields the coupled tail rotor system
eigenvalues and corresponding eigenvectors, are based on the
consideration of the boundary conditions occurring on the

Sstructural components (i.e., blades, control system, etc.) of
9 •the helicopter/tail rotor system model. In general, the

application of boundary conditions, as used in the development
of analysis, has four basic forms. These are: (1) the use of H
the boundary conditions at the unattached end of a structural

4 • component (e.g., blade tip) to reduce the number of unknowns
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associated with the comlinent; (2) the matching of the boun-
dary conditions at an interface between structural components
(e.g., shaft-hub interface) to directly prcvide equations
relating system unknowns; (3) a combination of the use of the
boundary conditions acting on a structural component (e.g.,
control system), due to the attachment to other structural
components, with the equations of motion of the structural
component to provide the equations relating system unknowns;
and (4) the use of the conditions occurring at blade model
articulation characteristics (e.g., flap hinge) to provide
equations defining blade discontinuit, unknowns. The boundary
condition application will be discussed first for various
conditions of tail rotor hub restraint. The blade and fuse-
lage unknowns must be initially considered in the form of
real-time variables, i.e., a function of time, to properly
apply the boundary conditions.

In real-time notation, there initially exist twelve blade tip
unknown state variables for each blade and twelve unknown
state variables for the fuselage-tailboom-iin structure. The
blade tip loadings - three shears and three moments - can be
taken as zero in value for each blade, since the blade tip is
a free end. This reduces the number of blade tip unknown
state variables per blade to six: three deflections and three
slopes. In a similar manner, the nose of the fuselage-
tailboom-fin structure can be considered as a cantilevered
or a free end such that either the three slopes and three
deflections or three moments and three shears at the nose end
may be taken as zero, depending upon the condition of interest.
This reduces the number of fuselage-tailboom-fin structure
nose unknown state variables to six, Thus, for a system of
Nb blades and a fuselage-tailboom-ýin structure, 6 times
(Nb+l) unknowns exist, not including discontinuity type
unknowns, which requires the same numher of equations for
defining the unknowns. These equztions are obtained by
matching the moments, shears, deflections, and slopes of the
blades at their attachment to the rotor shaft to the moments,
shears, deflections, and slopes of the fuselage-tailboom-fin
structure at the same point.

For a tail rotor hub cantilevered to the shaft, as is the case
for a rigid, articulated, or flexstrap tail rotor, part of the
necessary equations are obtained by properly matching the
slopes and deflections of the blades to the shaft slopes and
deflections at the blade attachment point. The matching of
these boundary conditions is done in the rotating shaft
coordinate system and provides the equations necessary for
the determination of blade tip unknowns. From the relation-
ship between the fuselage local system at the end of the shaft
and the fixed blade reference coordinate system discussed
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previously and shown in Figure 7, the shaft deflections at
* the interface end of the fuselage-tailboom-fin structure can

be defi~ed relative to the fixed blade reference coordinate
system in the deflection vector form Us = UZ I + UY

51 s f 3f~J

+ UXsVf' The s subscripted deflection variables above denote I
.he shaft deflections of the fuselage-tailboom-fin structure
with respect to the local fuselaqe-tailboom-fin structure
coordinate system at the end of the shaft. The blade deflec-
tions at the same point can be defined in the deflection
vector form um = uxm +u U + uzr where the m sub-

m rm ~M rm m rm
scripted deflection variables denote the blade deflections of
the mth blade at the interface with respect to the rotating
shaft coordinate system of the mth blade. The shaft deflec-
tion vector us can be expressed relative to the shaft rotating

coordinate system for a specific blade by use of the inverse
coordinate system transformation associated with Equation (6).
Thus, for tne mth blade the expression um - us = 0, where both

vectors are defined relative to the rotating shaft coordinate
system of the mth blade, is used to relate the shaft deflec-
tions and blade root deflections in the three orthogonal
directions. Each direction provides a separate equation, for
a total of three deflection relatinq equations per blade.
Using a similar procedure for the blade and shaft slopes, the
expression -m - Os = 0 provides three slope relating equations

for each blade. Thus, six equations for each blade can be
obtained, with the result that a total of 6 x Nb equations are
obtainable corresponding to the number of blade state variable
unknowns. Due to physical considerations, the equation for
each blade involving the blade inpiane slope Ozm is altered to

*zm = 0; which, on the inclusion of consideration of drive

shaft torsional flexibility is replaced by Ozm - Mz /kd = 0m m
where Mz is the blade chordwise moment at the root of the mth

mblade and kd is the torsional stiffness of the drive shaft.

The remaining set of 6 equations corresponding to the number
of fuselage-tailboom-fin unknowns is obtained by matching the
forces and moments of all blades to the shaft forces and
moments in the fixed reference blade coordinate system. The
moments at the interface end of the fuselage-tailboom-fin
structure can be defined in the vector form Ms = -Mzsif
+ Mysf + TsIf where Ts, Mys, and Mzs are the moments in the

local fuselage-tailboom-fin structure coordinate system about
its X, y, and z axes, respectively, at the end of the shaft.

* The blade root moments in the rotating shaft coordinate system
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can be written in the vector form =Tr + My + Mzm m rm mrm m rm
where Tm, MYm, and Mzm are moments about the x, y, and z axes,
respectively, of the mth blade's rotating shaft coordinate
system. The moment vector M can be expressed relative to them
fixed coordinate system by the transformation specified in

Nb
Equation (6). The expression M - M= 0, where bothm=l m s

vectors are defined relative to the fixed reference blade
coordinate system, is used to obtain the expressions for the
moment boundary conditions in three directions. The expres-
sion for the moment boundary condition equation in the kf
direction must be replaced by Ts = 0 since the torque due to
the blades is not allowed to be applied to the shaft from
which it would be transferred to the fin, but is considered
to be removed by the tail rotor drive shaft transmission.
Using a similar procedure for blade and shaft shear forces,three additional equations are obtained from the expression

Nb
X V - V = 0. Thus, six equations in real-time notationm=l m s

corresponding to the six fuselage-tailboom-fin structure
unknowns are obtained. In combination with those correspond-
ing to the blade tip unknowns, a sufficient number of
equations in real-time notation are available to completely
represent the problem if control system and discontinuity
representations are not involved.

The previous discussion was restricted to the situation of a
rotor hub cantilevered to the tail rotor shaft. When consider-
ing a gimballed or teetering rotor system, some of the
previous boundary condition equations must be modified to
allow for the additional hub degrees of freedom which occur.
For a gimballed rotor, the rotor hub is assumed to be attached
to the rotor shaft by a swivel joint such that the rotor
cannot physically apply transverse bending moments to the
rotor shaft. It is also assumed that the torsional and flap-
wise blade bending slopes are independent of the bending
slopes of the end of the rotor shaft. As a result of the
nontransmittal of the blade moments, the moment boundary
condition equations for the moments about the 1f and 3f axes

reduce to Mzs = 0 and Mys= 0. The components of the vector

Nb
SM in the direction of the Tf and Tf axes must also be

m=l
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zero in value, providing two additional boundary condition
equations which are not required (if a phasing relationship
between blade behavior is not assumed) but are automatically
satisfied by the final solutions that are obtained. The slope
boundary conditions for 4xm and 4Ym are no longer coupled to
the shaft slopes and are not necessarily zero in value; rather,
the slopes of each blade are related to the slopes of the
other blades because each blade is cantilevered to a hub that
is free to rotate out of the reference rotor plane. Transfor-
mation of the blade root slope vectors for each blade in their
individual shaft rotating coordinate system to the shaft
rotating coordinate system for the first blade and separating
vector components provides the condition that the terms
(0m COSO -OYm sinom ) and (x msin4 m +Oy mcosom) each represent a
function of time which is independent of the value chosen for
m. Thus, for each blade, these two terms can be set equal to
those corresponding to the next azimuthally located blade,
with the result that a sufficient number of real-time boundary
condition equations are obtained to replace the rigid hub
O xm and Ym related boundary condition equations.

In the case of a teetering rotor which is allowed to have only
two blades equally spaced azimuthally and free to rotate about
the rotating Jrl axis; i.e., 3rm axis of the first blade, the

blade root moment My and slcpe OYm are independent of the
shaft moments and slopes. Thus, in the moment boundary condi-
tion equations corresponding to the fuselage unknowns for the
rigid hub conditions, the contribution of Ilym must be removed.
In a manner similar to that discussed for the gimballed rotor

2
system, the component of the vector • M in the direction of

m=l m
the 3 rl axis must be zero in value. This equation is neces-

sary to replace one of the two Oy related boundary condition
equations (one for each blade) since the 'y related boundary
condition equation for a teetering rotor will only provide a
single equation. The blade slope boundary condition equation
for OY for the first blade in the rigid hub case is replaced
by Oyl + "Y 2 = 0, using the form of the second slope term for

the gimballed system, dropping the 4xm contribution and taking

= 0 and -r radians. For the second blade, use of this
term would result in "Y2 + "YI = 0 which is identical to that

f i~44
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for the first blade and cannot be used. Thus, the expression

MyI - My2 = 0, obtained from the summation vector, is used to

replace the Ym related boundary condition equation for the

second blade.

There may also exist up to three discontinuity unknowns
resulting from consideration of a flexstrap or articulated
blade. For a flexstrap blade, the discontinuity unknowns are
the three mutually orthogonal perturbation deflections of the
control rod attachment point to the pitch horn in the direc-
tions of the axes of the rotating shaft coordinate system.
Two of the three equations corresponding to these unknowns are
obtained by using the conditions that the control rod can only
carry an axial load, thereby requiring that the perturbation
forces applied to the control rod at its attachment point to
the pitch horn in two mutually orthogonal directions perpen-
dicular to the control rod must be zero. The third equation
is obtained by requiring the perturbation forces acting
axially on the ends of the control rod from the pitch horn and
the control system and/or ground to be such that the control
rod is in dynamic equilibrium. The discontinuity unknowns
allowed for an articulated blade are associated with the
perturbation torque, pitch angle, and flap angle. The
required equations are obtained by utilizing the conditions
that the perturbation flapwise moment at a flap hinge must be
zero, the perturbation torque at the pitch bearing must be
zero, and the perturbation torque applied by the control rod
is a function of the blade perturbation rotation angle ýx at
the torque application point and the deflection of control
system such that the control rod is in dynamic force equilib-
rium.

Additional system real-time unknowns corresponding to swash-
plate control system variables result on consideration of the
control system model. By simultaneous solution of the
equilibrium, stress-strain, and strain-displacement equations
for a ring with applied loading, a swashplate governing equa-
tion of motion is obtained. This equation involves the
azimuthally dependent harmonics of the ring deflection in the
rotating swashplate coordinate system and the base plate
deflection. The base plate collective motion and the boundary
conditions occurring at the attachment point of each control
rod tn its associated blade pitch horn are used in conjunction
with the characteristic of the spring-damper units attached to
the swashplate ring to properly represent the ring applied
loading in terms of the swashplate unknowns. The boundary
conditions at the attachment of the collective spring-damper
support unit to the tail rotor gearbox or to ground are used
to obtain an expression for the collective base plate motion.
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This expression involves time differential operators such that
this deflection unknown cannot be replaced in the swashplate
governing equation of motion without the application of
Laplace transforms.

The application of boundary conditions has been discussed on a
real-time variable basis. The use of Laplace transformation
techniques on the real-time equations obtained from boundary
condition considerations provides equations involving shifted
and unshifted Laplace transform variables. These variables
are, in turn, defined as functions of shifted and unshifted
Laplace transform variables due to the representation neces-
sary for the inclusion of interharmonic coupling. For example,
a Laplace transformed blade state variable at a radial posi-
tion on the blade and a function of s is defined by the form
of Equation (3) with k = 0 to be dependent upon the shifted
and unshifted blade tip state variables. Thus, the use of
Laplace transformations increases the number of unknowns
associated with the system. By frequency shifting the Laplace
transform variables in all of the basic boundary condition
equations, the additional equations required for the shifted
Laplace transform variable unknowns can be obtained. However,
the expressions for a given frequency shifted equation will
involve variables of a higher or lower frequency shift which,
in turn, must be defined. Thus, to be practical in the con-
struction of the final governing matrix, a limit must be
applied to the number of frequency shifted sets of equations
(truncation of frequency shifted variables). In addition, the
application of Laplace transforms allows the replacement of
the base plate Laplace transformed deflection unknowns with
their equivalents in the transformed swashplate governing
equations.

BASIC RESULTANT ANALYTICAL FORMULATION

This section will be concerned with the general form of the
analytical expressions utilized tc ibtain (1) the final
governing matrix equations which must be solved to obtain the
solution complex variable eigenvalues and eigenvectors and
(2) the fuselage-tailboom-fin structure and blade state
variable mode shapes corresponding to the solution eigenvalues.

Blade State Variable Representation

The general transfer matrix representation of the k frequency
shifted blade state variables just beyond the jth lumped
parameter was given previously in Equation (3). In actual
application, this equation is modified to a form in which the
blade is divided into sections representing the lumped
parameter characteristics in the blade.
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in the sectional representation, the blade is divided into a
finite number of sections in which each section may have the
following characteristics: rigid offsets in the shear center
axis, bending of the shear center axis at a point, a centrifu-
gaily stiffened elastic length or flexstrap pitch horn
restraints, concentrated torsional spring-damper units, mass
and inertias, and aerodynamics as depicted in Figure 8. The
concentrated torsional spring-damper unit.. bends, and rigid
offsets are allowed in three mutually perindicular direc-
tions. The Laplace transformed transfer arrays for each of
the above-listed characteristics, except for aerodynamics, in
the order mentioned above, can be denoted by

[~J~[~jt'~ ~K 41A'L~krnand Fijr
where i and mn denote the ith section of the ith blade. These

arrays are equivalent to the previously defined arrays.

The k subscript denoting s replaced by (s-ikn ) is only
involved in matrices originally containing differential
operators. The arraysw out a k subscript consist of numer-

ical constants only. For an aerodynamics application point,

the previously used Ftng s replaced by (s-ikn)is enly n
oprtr. h ray ihu usritcnito ue- 4-

S•k n1j [An n~i i'n-k)- 'ft

[k, n]n]M
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for the mth blade. This array is defined by the matrix
expression

n ini i
S-k, (s-inn) - + - m (10)

in which (s-inP) is a multiplier which results due to the
periodic aerodynamic coefficients multiplying a differential
operator acting on a blade state variable.

The application of the individual transfer matrices to the
associated transfer matrices for the characteristics involved
in each section is carried out as they are encountered in the
same manner as Equations (1) and (2). However, after trans-
ferring across the ith section using the specific i super-
scripted transfer matrices defined previously, the associated
transfer matrix at the inboard end of the ith section is

denoted by [9k n]m The same concept of transfer matrix
• , m"

application occurs in regard to the discontinuity column
vectors such that they also can be referred to as

b~4 c~andThebblde tip k,nmakn d Mdk,n}:"

The blade tip conditions that the moments and shears acting on
the blade tip are zero allows the associated transfer arrays

to be redefined as 12 x 6 arrays. This reduction of[k, rjm
array size significantly reduces the number of computations
necessary to define the state variables acting at any blade

section and to solve the final governing matrix. The reduc-
t tion in associated matrix size can be represented by defining

the Laplace transformed state variables at the mth blade tip

by the form jfk~ m = [Lkn m IEnm where m is the k
n=_oo

frequency shifted state variable column vector consisting of
the twelve Laplace transformed state variables defined pre-
viously in real-time form whose order in the cclumn vector

is defined by the form

x NxT y Oz Mz -Vy -us y My is the n fre-

quency shifted mth blade unknown state variable column vector
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consisting of the six unknowns at the mth blade tip such that
* *

STf = ux x u iy z - uz py j , and m for k ý n is a

12 x 6 array of zero elements and for k = n is defined by the
expression

1 00000
000000

S01 0 0 0 0S~000000

[Bk] 0 0 0100 (0
00100 0
0000100

S, m = 0 0 0 0 0 0 (i

S00 0 0 0 1

It is impossible to consider ti1e harmonic summation limits
from -- to +- in actual application of this complicated
analysis; therefore, the summation was truncated to the range
of -Nf to Nf, where Nf represents the number of harmonics
above and below the main eigenvalue which are allowed to
couple with the main eigenvalue related behavior. For example,
if Nf is 1, then the 1/rev and -1/rev shifted frequencies will
be allowed to couple with the 0 shifted frequencies. On the
basis of analyses conducted by RASA, it has been determined
that these limits are very realistic and the answers that are
obtained are within a few percent of those obtained using
higher values of Nf. Combining all of the above-noted items,
the frequency shifted state variable vector at the inboard end
of the ith section of the mth blade can be defined by the
expression

!' Nf
kI n-NfL Bk, ni * n , n-k,nnm n

{[} ,n] nm k,nm n k n )m

{dknn m(•-n)in (12)

(12)

The associated transfer matrices and discontinuity column
vectors for additional blades, if they are identical to the
first blade and i is zero, can be related to the first blade
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associated transfer matrices and discontinuity column vectors
by the form

k,nni i(n-k)mle

where the exponential relationship results from the applica-
tion of the aerodynamic transfer matrices. Equation (12)
provides the definition of the blade state variables at any
blade section in terms of the blade tip unknowns and also
provides the means to obtain the blade state variable mode
shapes once the blade tip unknowns are obtained for a solution
eigenvalue.

Fuselage-Tailboom-Fin Structure State Variable Representation

The overall concept of the transfer matrix representation of
the k frequency shifted fuselage-tailboom-fin structure state
variables is similar to that pertaining to the k frequency
shifted blade state variables. Differences at the basic level
do occur as a result of the direction of transfer matrix
application and the conditions to which the fuselage structure
is exposed. The direction of transfer matrix application for
the blades is along the local blade negative x-axis (tip to
root), whereas for the fuselage-tailboom-f in structure the
direction of transfer matrix application is along the local
fuselage-tailboom-fin structure positive x-axis (nose to tail).
As a result, the individual characteristic transfer matrices
for the fuselage structure, without considering any altera-
tions due to different conditions, would differ from those for
the blade characteristics due to required changes in sign of
some of the matrix elements. Although the direction of
transfer matrix application is different for the fuselage-
tailboom-fin structure, the individual characteristics of a
section (i.e., mass, bend, elastic, etc.) are considered in
the same order as the blade characteristics.

The conditions for the fuselage-tailboom-fi:: structure which
differ from those on the blades are that the fuselage struc-
ture is not rotating and the aerodynamic forces for the
fuselage are due to flat plate drag effects resulting from
crossflow. Not having a constant rotational speed associated
with the fuselage-tailboom-fin structure drastically reduces
the complexity of the transfer matrices associated with mass
and inertia parameters, elastic parameters, and aerodynamic-
parameters. In the mass and inertia transfer matrices, ali
terms which include f2 are dropped, thereby removing mass and

inertia related damping terms, structural damping, and Q2
effects. The elastic transfer matrix is modified by not P
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including centrifugal stiffening of the section elastic length.
Without a constant rotating speed of the fuselage-tailboom-fin
structure, the aerodynamic transfer representation does not
involve periodically time variant coefficients, with the
result that intrafuselage interharmonic coupling does not
occur. Thus, the aerodynamic transfer matrix can be
represented by

k = = (s-ik {j) +

where the subscript s denotes the fuselaqe-tailboom-fin
structure and can be added as a subscript to the other types
of fuselage structure transfer arrays to denote the same.
The above expression can be obtained by letting n = k in
Equation (10).

In applying the transfer matrix procedure in going across a
fuselage-tailboom-fin structure characteristic, the associated
transfer matrix for the fuselage-tailboom-fin structure would
be defined in terms of the previous associated fuselage-
tailboom-fin structure transfer matrix by the form *f
Equation (1). Thus, since the fuselage is not exposed to
any discontinuities or intraharmonic coupling, the. fuselage-
tailboom-fin structure state variables just beyond the ith
section can be defined by the expression

k s s s (13)

where the general state variables and general k shifted state
variable vector are defined as for the blades except they are

on the fuselage-tailboom-fin structure and s is a 12 x 6

array representing the k frequency, shifted associated fuselage-
tailboom-fin structure transfer matrix. The k frequency
shifted unknown column vector of six variables at the initial
transfer matrix application point will consist of either
initial fuselage-tailboom-fin structure slopes and deflections,
as is the case for the blades with free end conditions, or
initial fuselage-tailboom-fin structure moments and shears
corresponding to cantilevered end conditions. In the latter
case, the initial associated fuselage-tailboom-fin structure
matrix is defined by
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S• 0 0 0 0 0 0ý
•,1 0 0 0 0 0• ooooool

0k oo 0 0 0 0
r~0  0 00 00 0

0is 0 0 0 0 0 (14)

0 0 0 000 0
S 0 0 0 0 0 0

0000000 0 0 0 1 0

and s T z - Vys My V k"

Equation (13) provides the definition of the fuselage-tailboom-
fin structure state variables at any fuselage-tailboom-fin
section in terms of fuselage-tailboom-fin structure unknowns
and also provides the means to obtain the fuselage-tailboom-
fin structure state variable mode shapes once the fuselage-
tailboom-fin structure unknowns are determined for a solution
eigenvalue.

Rotor Hub-Shaft Interface Conditions

The Laplace transformed form of the inter'"ce boundary condi-
tions corresponding to the mth blade unk, as for a hub
cantilevered to the shaft can be given 4. a rms of the statei variables at the interface by the expr( 'IS -

(UC. + (- •Es-Ik + i ("s k -o

1+ [-j~~k - (7~ ~ / 2 =0

+ eiem/

S(Tm)k + [7s)k+l + (ý7s)k+ 1]e/2

Si •e-iom!2 0

"" -• s) k-l1e (m/2) =-

-1-i
ei m., 2

k4- Li(-UZs)k~ l - (us)kjl m/ = 0
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I k - (~~k/kd = 0

(-Uz)k + (ýs•ii (15)

k + -(ýSz s (-S)ek+lem/2

"+ i(Tz.)k1 - (F7&k-le m/2 = 0

which are obtained by (1) matching the real-time variables at
the hub relative to the mth blade rotating shaft coordinate
system, (2) replacing sine and cosine terms involving
(Qt + m) by exponential equivalents, (3) Laplace transforming

the resulting expressions, and (4) applying a k frequency
shift on the Laplace transform variables.

The expressions of Equation (15) can be represented in the
array form

[aR] {+k} +' .0 (16)

The variables NS and NSF are the number of blade and fuselage-
tailboom-fin structure sections, respectively, and the

matrices FR] and L8Rjm are defined by

1R] 0 0 0 00 0 0gg00g0 0 100000 0 010 000

R 0000 0 0 00000
0 00 1 -'/kd 0 0 0 0 0 7
0 000000 0 1 1  0 0hem0 00 0 00 0 00 1 0 0

•":':"/0 0 lieI 0 -e0
I'm -el'm~l

0 0 0 elm 0 lielm 0o ~I' o-im o -i I 'm0" :L

RI~m= 0 0 0 0 0 0 L i

0 0 0 i 0 :0 0
0 0 i 0 -I'j



where is the same as except the l/kd term is replaced

by zero, i equals 6T, is Kronecker's delta, and
b I imLI + 6)/2.S~~~elm= e(r1 +6I

On application of a similar procedure to the real-time
boundary condition equations corresponding to the fuselage-
tailboom-fin structure unknowns, the Laplace transformed
equations can be given in terms of the state variables at the
interface by the expressions

! N~b

(N S)k- 
-T]m)k 0m=l

SNb- 
"j

+k+l -i m)k+l]e"m/2

+ B(M)k -l + k'lR/2k=

k mm u

! , I•�j~ ) k - I €m k -1]I! ~Nb i

- LY--~Thk1i-+ (- l ke m/2(_Is m-l 1 i (1) k+l (Vm) k+lle(7

+ [( ~-l (-Vym) lk-im2

i NbiEl eiom/2

(es)k + ) k+l- (MYm)k+1

n- (TL[k + ((i m)k-e / = / 0
!~ ~~~~~Nb (mi eS/"i•

=•II ~(Vs~ '• .k"+l •mk +(-Vy m)k-lleim2 •l•

which can be represented in matrix equation form as
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F ITSF 1 Nb NS

fk + [0 (18)

where

000 1O 0 0O 000 0 0 000001000000O0

0y 0 0 0 0 0 0 1 0 0 0 0
O00 0O 0001000
00000 0 0010
00000O0000001

and

0 0 0 0 0 -6 0

0 0 0 0 0 0

0 eI 0 0 Iiem 0,mm ,m

[AR] m -liel'm 0 0 -el'm 0 O
I0 Iie 0 0 -e0 0

I'm O im 0
e0 0 -lie 0 0

The matrix Equations (16) and (18) provide the necessary
boundary conditions corresponding to blade and fuselage-
tailboom-fin state variable unknowns in terms of the state
variables at the interface for a flexstrap, articulated or
rigid rotor system.

The consideration of a gimballed rotor system results in a
modification of the boundary condition expressions provided by
Equations (16) and (18). The boundary co- ition matrix equa-
tion involving moments, Equation (18), is modified to a
gimballed situation by simply removing the contributions due

to rm and Mym terms which is achieved by replacing RI m with

AG1.m This matrix is obtained when the second and fifth

columns of R are taken to consist of zeroes only.

Slope relationships are not as easily modified. The two terms
presented previously in the discussion of the slope boundary
conditions for a gimballed rotor system can be replaced by the

two terms (Oxm + i ym)e and (4xm - i•ym)e which are
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each a function of time indeperdent of the blade considered;
for example, (Oxl + iYl)e = ( + i2 d

ip 1e 4 2 + 'Y 2)e aj-i1 =-iOx2

(OxI - iylY)e = (4x 2 - i•Y 2 )e . In general, on taking

the Laplace transform and shifting the Laplace transform
variable by ikS, the relationships

P!

p)k + i(Tp)k]e - [ p+l)k + i(ýp+l)k]eip+l=
(19)

Lj~p~] -ik -(- i(Tp+l)k]e P+l 4
pkxp L p+l k

result where p denotes the blade of interest; and if p is
taken as equal to the number of blades, then p+l is taken as
1.

The boundary condition matrix equation involvinq slopes,
Equation (1'6, is modified to a gimballed situation by

replacing LaR] with aG]m and L$RI]m with Gm and intro-

ducing a new term on the left side of Equation (16) of the

form [cG]m+l { mk}+l where if m + 1= Nb + 1, then m + 1 is

taken as 1 corresponding to the first blade. The matrix

LGim is obtained by modifying the second and sixth rows of

[aR] to the form 0 0 e 0 0 0 0 0 0 ie mn0 0 and-*m m (
(0 0 e 0 0 0 00 -ie-m 0 0], respectively, where

denotes a row array. The matrix G m is the same as R m

except that its second and sixth rows consist of zeroes only.

The matrix G m+l has the same dimensions as , with only

nonzero elements appearing in the second and sixth rows of the

56 _



Si~m+l iM+1
form 0 0 -e 0 0 0 0 0 0 -ie 0 0 and

0 0 -e 0 0 0 0 0 0 +ie 0 0 ,respectively. These

modifications represent the replacement of the cantilevered
boundary condition (m)k and (m)k equations in Equation (15)
with the gimballed slope boundary conditions exemplified by
Equation (19).

The final hub interface boundary conditions that must be
considered are those for a teetering rotor system. In this
case, the My moments are not passed to the shaft such that

[AR is replaced by Tm which is obtained when the fifth
colnmn of [ARIm is taken to consist of only zero elements.

In regard to the slope boundary condition alteration due to a
teetering rotor, only the (Tm)k definition must be changed.

SHowever, on dropping (xm)k from Equation (19) and noting that

!• i = 0 and ý2 = 'T' only one equation results. Thus, for a

teetering rotor the equation corresponding to the second blade

S(Tm)k equation must 1-, based on the summation of moments

(MY acting on the hub becoming zero. Thus, corresponding
to the first and second blades, respectively,

+ i.,ypl)ke-pl = 0

(PP) ke + 1  -0
(+P)Ie p + = 0(i

where p can only have a value of 1.

The boundary condition matrix equation involving slopes,
Equation (16), is modified to a teetering situation by

replacing [aR] with BTI]m6 + [aT2]6m and [$Rm with

[ T m'and adding the two terms T m+m and
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}, k NS 2
T ln_lhSkm+1 6m to the left side of Equation (16). The

L•Tl]m and LcT 2]m matrices are defined by modifying the sixth

row of j3R to tne form 0 0 0 0 0 0 0 0 0 -e m 0 0 and

0 0 0 0 0 0 00 0 0 e 0 1 respectively. The matrix LSTI]m

is the same as [RIm except the sixth row consists of zeroes.

The LT]m+l and [LT'1m_l matrices have the same dimensions as

[%R] with only nonzero elements appearing in the sixth row of

the forms [00 0 0 0 0 0 0 0 ie- im+l 0 0J and

0 0 0 0 0 0 0 0 0 0 e 10, respectively.

On combination of the forms of Equations (16) and (18)
required for rigid, gimballed, and teetering hub conditions,
the general boundary condition equations corresponding to the
fuselage-tailboom-fin structure and blade unknowns can be
given in the matrix form

Bj m1{k}m + mB2] k m}l + B0Em jkm-iNS

m ~ M. (+ NSmF

ID+m +IjiTk = 0 (20)

rl(...ANSF 1 NbN+ ( L m + 0 (21)is X X+I

where IBC = 0, 1, 2 for cantilevered hub, gimballed hub, and
teetering hub, respectively, and

58 4



I'1

m LR]6IBC + IBC + IBC6m + T mIBC m

[B2] =m+l =G]l[ [ T 1M+162

m = Gm+I6lBC + Tm+l IBC6m

[B ~ r~ 0[aT._62 62LBim = L T m~l2
1 IBC m

SD1]s= L 6RI]mBC + iGImBC + mTI~m6BC

and

MI . = [ARI] 0 EGI~m•BC, + [T,] 2
m [ 60IBC + I + m6IBC

Final boundary condition matrix equations corresponding to the
blade and fuselage-tailboom-fin structure unknowns in terms of
these unknowns are obtained by substituting the form of
Equation (12) with i = NS for the NS superscripted (blade)
interface state variables and Equation (13) with i = NSF for
the NSF superscripted (fuselage-tailboom-fin) state variables,
exercising caution in replacing the k subscripts with k+l and
the m subscripts with m+l or m-l as required. These final
expressions provide the necessary boundary condition relation-
ships for a given value of k and m, including the interharmonic
coupling effects due to blade aerodynamics and fuselage-
tailboom-fin structure behavior.

Swashplate Control System Final Governing Equations

The governing equations for the deflection behavior of the
swashplate in the swashplate rotating coordinate system are
obtained by considering the governing differential equations
of motion of a flexible ring in terms of swashplate variables
defined relative to the fixed swashplate coordinate system and
the equations which define the applied loadings acting on the
ring at discrete azimuthal locations. The loading represen-
tation requires a knowledge of the displacement behavior of
the base plate which can only be defined explicitly through
the use of Laplace transforms. Due to this fact and the
coupling between the blades and swashplate through the control
rods and the coupling between base plate motion and gearbox
motion, the final control system equations must be in a
Laplace transformed form compatible with the fuselage-tailboom-
fin structure and blade representation. Due to the complexity
of the analysis involved pertaining to the swashplate
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representation, the initial equations followed by a rough
sketch of how the final equations are obtained and the final
equations will be presented.

The governing differential equations for the motion of an
elastic ring - which involve variables that are a function of
both the azimuthal location of a point of interest on the ring
relative to the fixed coordinate system x-axis e, and time t -
consist of the equilibrium, stress-strain, and strain-
displacement equations. These equations for e increasing as
the point of interest moves counterclockwise around the ring
from the fixed x-axis are:

aVy(O,t) a 2v(8,t) Q(et)
R De = tQ

aMz(e,t) - -Vy(et) - T(6,t) - (e,t)
R a6 R

IT(e,t) _ Mz(e,t) 
- 8(et)R ae R

(22)
ae(et) - $(Ot) + Mz(e,t)
WR O R E1

av(e,t)

•24(,t) _ O(8,t) + T(e,t)
R 36 R GJ

where Vy(e,t), Mz(e,t), and T(e,t) are local shear force,
bending moment, and torque acting on the ring, respectively;

v(8,t) is the local displacement of the ring;

p' is the mass per unit arc length of the ring;

0(6,t) and D(e,t) are the local bending slope and
twist angle of the ring;

R is the ring radius;
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Vy, v

Figure 9. Coordinates of Swashplate Variables.

EI is the bending stiffness of the -ina;

GJ is the torsional stiffness of the ring;

o(e,t) is the applied moment per unit length acting
on the ring;

w(e,t) is the applied torque per unit length acting
on the ring; and

Q(e,t) is the applied force per unit length acting
on the ring.

The orientation of each of the 0 and t dependent variables inEquation (22) is shown in Figure 9.

The applied loading distributions as a function of 0 and t
can be written on consideration of the forces and moments
applied to the ring by the control rods and rhe spring-damper

Iunits supporting the ring by using a Dirac delta representa-
•-" tion such that
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Nb
a(8,t) = Pm(t) d - St - m)

m=l m m m

A
Ns

+ . 6(0 - x.) b_.(k. + c. a ) d(O,t)

Ns
s 6(e xj) (k4. c~. a ) ?'i,t)

j=l at
(23)

Q(8,t) - • P (t) 6(8 - M) - (f)
m=l m

Ns
- [ 6(0 - Xj) (k. + c. j ) d(e,t)j=l J

Ns
G(O,t) = - X j(0 - xj) (ke. + cO. a ) O(0,t)

j=l 3

where d(e,t) = v(8,t) - bjf(G,t) - u0 (t) represents the
J0

distance a linear spring-damper unit is compressed at time tif the unit is at a, and

Nb is the number of blades,

Pm(t) is the force acting on the ring in the negative
Z fcaxis direction due to the mth control rod,

d is the rigid offset of the mth control rod attachment
m

point from the neutral axis of the ring, positive
outward,

m is the azimuthal location of the mth control rod
m

relative to the reference blade position and defined
by m =(m-1)2i for equal spacing between controlNb

rods,

Ns is the number of linear spring-damper units supporting
the ring,
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Xj is the azimuthal angle locating the jth support
relative to ring xfc-axis,

b. is the offset of the jth linear spring attachment

point from the neutral axis of the ring, positiveS~ inward,

k. and c. are the linear stiffness and damping values
f o
for the jth spring-damper unit,

kO. and c6 . are the torsional stiffness and damping
values for the jth torsional spring-damper unit
counteracting local lateral rotation,

Xcj and c4. are the torsional stiffness and damping

values for the jth torsional spring-damper unit
counteracting local longitudinal ring rotation,

u0 (t) is the displacement of the base which supports the

spring-damper units in the negative z fc direction.

Substituting the Fourier analysis representation of the
6 and t dependent variables, as was specified by the form of
Equation (5) into Equations (22), and carrying out the
derivative operations with respect to e and then assuming the
resulting equations to be valid for each harmonic component
denoted by k, a set of six complex variable equations is
obtained. These can be simultaneously solved to obtain a time
differential equation for vz(t) in terms of the applied

loading harmonics. The resulting differential equation is

[ +t2  R3  v((t) Q -() o(t) + St O£(t) (24)
L t R

where for convenience hi

Sa 2 (a2_1)2 GJ ElS~F(a)-1a (EI + a GJ) R

i (GJ + E)l •Sa =
( a2GJ+ El) R



The above definitions for a = 0 or = ±1 are independent cf the
ring stiffnesses, as would be expected, since vl(t), v0 (t)

and v- 1 (t) correspond to rigid body degrees of freedom of the

ring.

The fixed frame displacement variables v£(t) can be related to

the rotating frame displacement variables w (t) by the

relationship

v (t) = e-1 Wt(t) (25)

which can be directly substituted into Equation (24) to yield
the following expression:

I .- 2inS _- L + Zw(t)
t 2  at R

=e - Q (t) - it-0(t) + S£(t) (26)

when the time differential operators are applied and the

equation is multiplied by e ik£ . The Laplace transform of
Equation (26) is

(S 2i2Ss - £2Q2) + R•j- W(S)

" [ipntQ iznt i ei9t1 it•

LT[ QZ(t) - e - a (t) +e S (t) (2

The expressions for 91(t), Q£(t), and a£Z(t) are obtained by
: substituting the $(8,t), Q(O,t), and a(e,t) definitions of

Equation (23) into the Fourier analysis equation exemplified
by Equation (4) and integrating utilizing the characteristics
of the Dirac delta integral as specified in Equation (9).
The resulting expressions involve the Xj dependent variables

D(Xj,t),E(Xj,t) and d(xj,t), where d(xj,t) = v(Xjt) I
-b 4(X,t)- u 0 (t). These variables can be defined as

SJ J
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00 ip (Xj-t)
v(xit) = w (t)e

- p=_co

0 ip (Xj-Qt)
4(xjt) = S w (t)e

p=-. P p

CO ip (Xj-9t)
0(Xjt) = • i w (t)e /R

• [ ip (xJ-Qt)
d(xj,t) -_ (-bjS)w (t)e - u0

j L.p- p

which can be substituted as required into the expressions for
O 2 (t), QR(t), and az(t) such that these applied loading

harmonics can be defined in terms of w (t) and u0 (t).
p0

The definition of the base plate displacement u0 (t) involvnd

time derivative operators and can only be algebraically
defined in the Laplace transformed notation by

Ns ipXj
(1-b S )C- e % (s-i,4•+ip+')

U (s-iP2) p l J P

NsK + (s-i9Mlc + [ K-C
•, j=l

?• [~~K + (s-ik£z)C] Is i •: (28)

• Ns

K K+ (s-ir.Q)C + K

where = k. + (s-ian) cj, K and C are the stiffness and

damping values associated with the base plate spring-damper
support, and ux-s(s-iM2) is the k frequency shifted rotor shaft
motion in the shaft axis direction. Thus, the exoressions for
the applied loading harmonics must be inserted into their
respective terms of Equation (27) and Laplace transformed
prior to use of Equation (28) to obtain the governing
swashplate equations as a function of the Laplace transformed
displacement and load variables: 7?(s), • 9 (s-iZ^p-<),

T- u-(s-i£P), and Im (s). The equation resulting from the
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execution of the above operation and insertion of Equation
(28) is modified initially by replacing the index Z with q,
then the index p with X, and multiplying thru by 2TrR such that
2•Rp = M which is the total mass of the swashplate ring. The
resulting equation is further modified by introducing a summa-
tion over an index n of the terms involving the swashplate
displacement variables which are taken as w`(s-inQ), where

Kronecker's delta is utilized to determine the values of n for
which terms are to be included. This equation is further
extended to provide additional equations by frequency shifting
the Laplace transform variable by ikQ such that the resulting
governing equation for swashplate displacements can be written
in the form

711

L£ -n~~ k,n ~n+9Aý7(-iQ
n =.n q£ k q, k

n:•: 6q 6k + . qk,n Ok+~l w£,(-n?

cx)q
CO Nb -iqk m

6 q+kUS(s-in) - m (l+dm q )"m(s-ikQ)e = 0 (29)•£n=- m=l

where

S'g= M[(s-inQ)2 - 2ikQ(s-inQ) - +22 ) +!• •. nR2

S_ L- JI+ n - A- + n K- -Z- 9 + - . + n

~kn -[Tt2+n--n ZKy+i - Z+n
1k,n <k+n K1 + K7 +• ~q,£ 2 q#- ZI,+ / -- £ K-q+

n q

Ns cibX.
K = (l-b.Sb)Ce c denotes signb,c = Ib a

!i} J=Ns

F: 1 Sl-bjSb) (l-bjSc)a + bcKC-a/R'

-ixj (c-b)
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SNs
R-a= K + (s-iaQ)C + Rs-

B jl
; [K: + (s-iaQ) /K-••

SK-ka =k + (s-iaQ)cj a

KC--a = U + (s-iaa)cO..

The expression presented in Equation (29) provides the swash-
k plate equations of motion for a given value of k and q and is

in a coefficient form suitable for inclusion with the array
coefficient form that results for the blade and fuselage
structure final equations. To confine the coupling to a range
that can be handled, the summation over n is truncated to the
range of -Nf to +Nf and the summation over Z is truncated to
the range of -Nmax to +Nmax. The governing equation for a
given value of q and k is obtained by substituting their
values into Equation (29) and carrying out the summations
indicated. For each value of k, q is taken to have values
from -Nn~ax to +Nmax such that 2Nmax+l equations result. In
addition, k is taken to have values from -Nf to +Nf such that
a total of (2Nmax-rl) (2Nf+l) control system governing equations
result.

The definition of (P) or F (s-ikQ) is dependent upon whether
km m

the rotor is comprised of articulated or flexstrap blades.
For articulated blades, (Pk)m = (F-Tk)m/am where am is the

control rod pitch horn attachment point offset aft of the mth
blade shear center axis and (-T is the k frequency shifted

torque applied to the mth blade in an opposite sense to the
blade torque due to the mth control rod. (T-T corresponds

to the (.k) m discontinuity for an articulated blade. For

flexstrap blades, the force applied to the ring ( is

defined in terms of the transfer matrix parameters used for
crossing the effective application point of the pitch horr
forces on the blade shear center axis. In particular,
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n= Nf ' m

- C(--k)m + C12,m(E-k)m (30)

8,m km 1,

where the Ci quantities are the elastic influence coeffi-

cients of the restraint transfer matrix of the mth blade;
(-kT7) m, .)m and (T-km are the k frequency shifted

discontinuity deflection variables of the mth blade corre4s-
ponding to the Uxr, uyr and _u deflections of the control rodS~r
attachment point; and

v- l m= C e C e1 n]Nr
Sk,njm 35 8 12 l4)m m

where [H§ was defined previously in regard to blade-fuselage

tailboom-fin interface boundary conditions and Nr denotes the
section at which the restraint application occurs. Thus,
depending on the type of blades involved in the rotor, the
(Pk)m forces acting on the ring are definable in terms of the

bblade state variables and discontinuity unknowns such that in
combination with Equation (29) the swashplate control system
representation is complete.

Discontinuity Representation

The remaining equations necessary to construct the final
governi•n matrix equation are those which define the discon-
rinuity terms (AT.k)m? (AkTm and (-k0m. For articulated

blades, these variables correspond to (-Tk)m, (-x•k)m, and

S(1k)m, respectively. If a control torque is to be applied

to the blade by the control rod (Mct = 1) at the inboard end
of section Nct, the torque opposite in direction to the blade
torque can be defined in terms of real-time variables by

Nct c(T m mm {a=_xmm,£Wpi)

(AT) ak( + Tmd/dt ) -x Sm,

where km and Tm are the linear stiffness and damping retarda-

P tion time of the mth control rod, respectively, and
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S = (1 + dmS )e . By applying Laplace tranformations,
including k frequency shifting of the Laplace transform
variable, to the real-time torque discontinuity equation and
dividing by km, the torque discontinuity expression

Nct G
(Erk)m/km Y a _ S W(s-ik) 0k,m am(Tx~m)k I kkm-C m

is obtained where Yk,m am ( + (s-ikQ)Tm)" The variable

Nct
( 4-Xm)k is equivalent to the third element of the k frequency

shifted mth blade state variable vector at the section denoted
Nc t

by Nct such that ( )k r where the form3)m

for i an integer, denotes a twelve-element row matrix with -he
ith element equal unity and all others zero. Using the form
of Equation (12) with the assumption that the pitch bearing,
if included, occurs inboard of the control torque application

point, i.e., {ck,n~m = 0, and the fact that

r k Nct Nct
,m 0, (mk can be defined in terms of the n

frequency shifted mth blade tip unknowns and flap discontinui-
ties. By substituting this definition into the torque
discontinuity expression, |

( • -•k ) m / k m - a m k , m ~ r 3 ] L L knf i_ -N c tr {*} N c t ( A y j-- mm yf[3IL -L n m ýS;mY{k, nlm (Y-•k) ;

S~Nmax

I• ' +Ykm Smw (s-ikQ) = 0 (31.)Y.=-Nmax m w

At the pit'ch bearing, if included in the blade model (Mfea = 1)
and located at the inboard end of section Nfea, the condition
exists that the torque must go to zero which is represented by
( l{SkNfea

= 0. However, to take into account pitch-laar4 m f re
coupling, if not handled by blade modelinq, the condition

SNfea Nfea fff{kjNfea

0(%)m + PLC(MZk)m = 0 or rpLC 0 has been
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allowed where [rpncJ is the row vector

0 0 0 1 0 0 PLC 0 0 0 0 0 and PLC is th, Ditch-lag coupling

factor. Thus, utilizing Equation (12)
• rpcINf IEk •Nfea * NfeaA

[PLCJ k, -] {E~jm k,nim
m •~- {dkn~ (A-Tk)Th

j•" ,=N n . nm mY

feNfea
where use has been made of the fact that rpLc ck,n1m 0.

At the flap hinge, if included in the blade model (Nflap = 1)
and located at the inboard end of section Nflap, the condi-
tion exists that the flapwise moment must go to zero which is

[ 1• •Nf laprl _

represented by (rl ){kfm = 0. However, to take into

account pitch-flap coupling, if not handled by blade modeling,
Nflap Nflap

the condition (Myk) + PFC (i) 0 or

(rpFCV•Sklm 0 has been allowed where r is the row

~PFCJ)kjm L rMPFC)

"vector (0 0 0 PFC 0 0 0 0 0 0 1 0] and PFC is the pitch-flap

coupling factor. Thus, utilizing Equation (12)

•iii [ 1 Nf Bk-n]NflaPfsk}* {b Nflap (-k
r rPFc) M. nM m - ,njm FO

n=-NfL{

{INflap m a
- Fk,nlm (A--•k) =0 (3

where use has been made of the fact that rpFC ,n/m = 0.

Equations (31), (32), and (33) can be used to define the k
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shifted discontinuity variables.

The discontinuity related equations for the flexstrap blades
are based upon the requirement that a control rod cannot carry
transverse loading and that the axial force in a control rod
is a function of the linear stiffness and damping characteris-
tics of the control rod and the relative change in control rod
length. The forces acting on a control rod at its attachment
point to the pitch horn in the same orientation as the
rotating shaft coordinate system for the mth blade are defined
by

__ ~N _fAT

n=-Nf k,n miqnJn +C l,m km

+ C2,m(T 4)m - 3,m(T3k m

n-Nf

m n=-Nf k~v niml{n~m C2,r(n7 k) m

'+ C7,m (T- k) m C 8,m(T-3k)m

n=_Nf ..k,nýmKn* + C
S" ~~~~+ Csm-'-m- Cl•mA•~

C ~F1 r~Nr(
where ICknm= lCI C C2 C -C 5 JmLJ Lk,nJm' [C--k =,m 1426 35m[] Yknm [Vy, n m

[C C C C -C C10 IB c[B and the definition of
i2 9 7 11 8 l JmL knm

other quantities was given following Equation (30).

The forces acting in the mth control rod local coordinate
system can be defined by

IFX2k a~ a2  a3 0

Y2k = t 0L VTk = C(34)
k 4 5  ct Kre.,

7F--k _-356 33mVk- , m k e m
where K = + (s-ikf)CT with K and CT repre-

kn c,m c'm c'm c'm
senting the linear stiffness and damping coefficient for the
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mth control rod spring-damper unit, respectively, and Xem is i
the extension of the control rod. In Equation (34), the 3 x 3
array, consisting of aim quantities representing sines and

cosines of control rod orientation angles, corresponds to the
transformation array for defining the local control rod unit
vectors in terms of the rotating shaft unit vectors. The
control rod extension can be expressed in terms of the deflec-
tions of the control rod attachment point to the pitch horn
((Ukm, (Uk-akm, and (Uzak)m) and the deflections of the

control rod attachment point to the swashplate ((UY-k)m,

(U-•k)m, and (U--•k)m) by the expression
= - Fu-• - 1(km

x a a (u-xa)Xe,m a 3 ,m 5,m km (mxPkyMj

T 3,m 4,mU-km - (U-•k)m] +6,m[(Uk)m (U-zk)m].

The control rod attachment point deflections associated with
the mth blade are defined in coordinate systems oriented the
same as the mth blade rotating coordinate system. Two of the
three equations required to represent the flexstrap discon-
tinuity terms are obtained from the (FX-k)m and
definitions in Equation (34). The remaining equation is
obtained from the (Vz-k)m definition resulting when the middle

and right side terms of Equation (34) are premultiplied by the
inverse of the transformation array in Equation (34). The
three equacions obtained on substitution of the definition of
the various deflections and force terms are

Nf
- [Dx + mDXIJk + DX2m(-k~ m- DX3(•- =0

n=-Nf k,n m m +D m kTm m kX mkm

n=-Nf+ DYI (nmk)m + DY2•--'km- DY3 m (Tkm 0n=-Nf ,n mf m mk m m k 0n

Nf .

- [ ~+ DZk,(k + DZ2k ••~n=-Nf ,n mjm +DmZm k,m(Z7

SDZ3k,m 

(-Tk)m + (DB m { INS

Nmax i m1
- 1( + dmS )w (s-ikQ)e = 0 (35)

£=-Nmax mNSP
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where the row vectors consisting of 12 elements are defined
by

011 ct(N] + a~t m~Vk m + a3mu- ~)

~Dknm a4,m (UNk n~m + a 5,m(C\TYk,nlm
[Ukn m

mDkJ~l (C('I~ 6,mca6 mk,m)

=5~ cy3,m~x4 m(r 5) + Ll2m(r]/t m [r9 1)sp= -6,mNSP

- 3 ,m 5,m~rl) - Ll2m(rl 01/a 6 ,m

in which L12 is the distance from the hub center to the mthm
control rod attachment point on the swashplate ring which is
used in conjunction with the slopes and deflections at the
hub to determine the transverse motion of the control rod
attachment points, and NSP is an integer variable equal to 1
if the swashplate is allowed to move along the shaft axis,otherwise equal to zero. The single element variables in
Equation (35) are defined by the expressions

DXl =a C + a C +alm l,m ,m 2,m 2,m 3,mC3,m
DX2m = al,mC , + 2,mC7,m + a,mCs8m
DX3m =a C + aC + a

DY'm = 34,mC1m +2,mC8,m 3mCl2m

DY lm = a 4,mC2,'m + a 5,mC72,m

DY~m = a4,C3, + a 5,Cs45,m ,m ,m 7,m
DY3 = a-C + a6

4,m 3,mn 5,m 8,m

DZ2 a a /a +t C /(a a Kk,m = 3,m 4,m/6,m ,m 6,m k,m)

k~m3,m4,m6,m 8,rm 6,m 6,m m
DZ3 kKDZk,m = +C2,m/(a6,ma6,mk,m).

The last equation of Equation (35) utilizes Lhe swashplate
displacements which are defined relative to the nonperturbed'
position of the swashplate to define the shaftwise deflection
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of the control rod attachment point if the swashplate is
allowed to move along the shaft. If there is no motion ofSthe swashplate relative to the shaft, the deflection of the

control rod attachment point is based on the motion of the
hub. All of the necessary equations for construction of the
final matrix have been presented and may now be arranged in
the final matrix form.

Final Matrix Equation

Equations (20), (21), (29), (30), (31), (32), (33), and (35),
in conjunction with Equations (12) and (13), allow the con-
struction of the final governing equations for any value of k
denoting the k frequency shifted equations which can be
represented in the form

Nf Fkn n*

n=Nf Tkn

where [Tk,n] contains the terms relating the contribution of

n frequency shifted unknown quantities in the column vector

"{nJ to the k frequency shifted governing equations. The

construction of the [Lk n] matrix can be represented using a1. three-bladed rotor as an example and integers for blade

subscripts and superscripts in the form

f",nk, J k, n1 Ik, 2 ,

0 i~Ik Fý I I _Lkl/ 0 [ n 'Bk,nll L.k,n 2 [k,n]J3

___12 [Ek n]_6k kki 1 .07)

[Tk,n] = [BSk]l n [ "k, n] 1 ]1 [-k,nJ 1]

kn [-B -~ 1B~ q3

[rk]3 n k,3 Bk,n]3 ["-fk,n]k, n]Bk,n]3
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If the number of spacial harmonics retained in the swashplate
representation is limited by letting q and k range from -Nmax
to Nmax, for Nmax equals 1 in Equation (39), the swashplate
impedances are represented by

-in •kn n R•k,nl n+1

n k -1,0 k-i -1,1 k-i

] n] -_k,n k-I .0 n -k,n •n+l

k n k 0,1 k

•o _kn •n-l1 -A n n •

1 l,-i k+lX 1,0 6k+] n 6k

the swashplate to fuselage-tailboom-fin coupling is represen-
ted by

F_ U [ )rkiNSF n

k, = (rl sk -1] 6k

•i rl]k+INSF •

and the swashplate to blade coupling is represented by either

_Ul (" -Sm,_I m

• •k n• 6 cols.÷-Sm, -2 cols.-÷offS o
Bo /am zeroes /7, azroes M ere

S /ai' ~-S 1, iam

for an articulated blade or
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Lk,]Lm

-S Sm -§3 C 6 S cm,-l k,n m -1C3,m n m,-l 8,m n m,-l 12,m 6

-S Smk C k kS
m,0 knI m 3,m n mn n,0C12,m n

- sC--,kC], m 6kC -S kc-Sm, l ,n m3,m n Sml 8,m n n,iCl2,m n

From Equation (21), the diagonal fuselage-tailboom-fin array

Lkiis defined by

i• F- 7NSF

ýFUk] [Y] Bk] s
and the fuselage-tailboom-fin coupling to the blades is
defined by

L-k,njm= [ n].j-fFB- n -{f--B ,n~m-fFBk--,nr

where

lFk ]NS
n , m mL+Iim

1r~e~NS

Sk,n m ' 1]mOj k+I,4nm

and {T-} and fkBnjr are defined in a similar form,n m ,nin
with b in the last expression replaced by c and d, respec-
tively. Prom Equations (20), (31), (32), and (33), which
represent an articulated blade, the diagonal blade arrays

[NB- are defined bv
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V77-1 7 r~ u

E[kfIf LB-Bk,nim [TB k, n] m

kk~h~ L..nýLL

where

Lk, n]m r= kJ[B]M

-a lmlb k,nm r LIL 1 n] LN&kn.C

[[- [k n]m r rPLC) L'k,n]l]ea

rNf lap
(rPFC} Lý,n m

-BDk
[I LBBk,n]rn

Ilct
i/k m 0 +a m Y jkm f~,n~

-(r PLC} {gk,nl} 0 -(r PLClf{rk,n m

Nf lap If lap

~jI and~(rPFC3{Skn}Il P -rFCJ fck, n m0j

adthe off diagonal blade arrays [TBk,n are defined by

F - - - -771

D , -,4k, 40, 1, ~,~



ýBB J j [B!
lk~~L~Jk , n]im

zer3 rows
[yk, njm ofzeroes

j~rm +5

where

P.- [W BO , •kn] j-

2 _

BTJ2 k,n]mj

[B2]{k},n j Aj-m [B2] k,nl}j A-m L]{ j 3-m
I- -rn{C( k -m k,nJ

-m 
LBO]J{nkj 63-m 

Tland A j- Nb+ l 61 the latter term required for the

consderd.A~ = jj-mjm •ICNbth blade equations, Nb being the total number of blades be-
inq considered. The blade to fuselage-tailboom-fin coupling

arrays are defined by

________________ -_I' D~i m ýýk -•NSF 6

-V is n-k

k L~ 3 rows
of

zeroes

and the blade to swashplate coupling is defined by I
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ýýM ".. • . .. -,•-'' ^, ýý - ; -- -.. . . .. .. . . . . .. - -- " "÷- .. ..-

CIL

6 rows of zeroes

[TS = km m,-i Yk,m Sm'o Yk ,m

0 0 0

0 0 0-~

For a flexstrap tail rotor, using Equation (35) instead of
,b ~Equations (31), (32) and (33), the diagonal blade arrays and

blade to swashplate coupling arrays are altered to tVe form

[ik"n]m

[B1][ NS [1 f NS[B1NSi!.E~~E~~nm _E13{k,nnm _Bm•,NS[Bl 1]m T ,•q ni_
I~ m[ kFn, ni.Fkn

-DIDxl DX2 -DX3IT Xk, nM !Dlm m m

" DY I DYl DY2 -DY3

Ii -Dk -DZ3
V-DZk,n]m DZlkm L'Z2 km kmNS NS )NS I

i+(DBimnk'n m " [DB)mLkn~ m -fDElm{Ckn}mm -(DBm{fk'

L, k im n

8 rows of zeroes

S-Sm, -i -S M-Sm,O m,

The column vector of unknowns is defined by

777974

LI=



rrn

•" 3

•. wherea in general

L" -

SWNmax(s-in.Q)'

~~n m

£i• •-i l(s-inQ) n}m

i {n= 7i0 (s-inQ) and n•m Y2n_

••i( s- in2)n

•., W~~Nmax(si)

Equation (37) has been given for a system consisting of all [
•'possible components of coupling. Considering this array to be

S~made up of five columns and five rows, the exclusion of a
S' ~swashplate from the system results in the removal of the first
ilcolumn and first rothe exclusion of a fuselage-tailboom-fin

structure results in the removal of the second column and
•. second row, and the exclusion of a blade results in the

removal of the row and column containing the associated diago-
"K nal blade array. For teetering rotors, only two blades are

Sallowed such that blade matrices for m greater than two do not
S~exist.

The k frequency shifted equations represented by Equation (36)
involve n frequency shifted variables which can be defined by !i

• ~~considering values of k from -Nf to +Nf such that the final ••

•: • ~matrix required for solution may be obtained in the form •!i
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LT O'_11 [Y 0 [TO,i {1l~O}* (38)

for NF 1. In gene,-3l, the number of matrices

required to construct the final governing matrix is defined byi 2
(2Nf+l) such that for Nf equal to 2 the resulting governing

matrix would consist of five rows and five columns of [k,n]

matrices.

Throughout the development of the analysis, the degree of
interharmonic coupling (due to periodically varying coeffi-
cients) used in obtaining the governing equations and the
final governing matrix were limited by the truncation of the
summations involved to the range of -Nf to +Nf. If this trun-
cation procedure is not applied, an infinite set of governing
equations is obtained. Thus, in matrix form, an infinite
final matrix results such that there are an infinite number
of roots which satisfy the final matrix determinant. This
characteristic of equations resulting from consideration of
periodically varying coefficients in a ground resonance
helicopter analysis was encountered by Coleman and Feingold
in Reference 10. It was also noted in Reference 10 that with
the inclusion of periodically varying coefficients, system
motions are defined by a form which involves the term

G -*i(w+nS)t
[ ane such that the value of w is not uniquely

determinate, since w±nQ will also satisfy the determinant.
Thus, the infinite number of roots to the infinite determinant
will consist of the principal values of w plus all of their
harmonics. The roots of Equation (38) in an infinite form as
well as in the truncated form exhibit the above-noted behavior. A
In the truncated form, the number of harmonics of the prin-
cipal frequencies which are solutions to the determinant of

Sthe final matrix are dependent upon the magnitude of Nf.

In the application of Equation (38) to a physical system, )
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Nf equal to 1 is probably sufficient on the basis of
(1) results obtained in a similar, but not as complex dynamic
respcnse analysis and (2) consideration of the interharmonic
coupling that occurs for u.mbrella, reactionless, forward
cyclic, and backward cyclic blade motion. During use of the
dynamic response analysis of Reference 11, the difference in
steady response results obtained with and without including
the -2/rev and +2/rev effects were slight. In the air reso-
nance modal analysis, developed herein, the harmonics to which
the blade motions couple in the various types of blade modes
noted above are dependent upon the type of mode such that the
truncation procedure dcas not signicantly affect the results
obtained.

In order to provide some insight into the method of developing
the final governing matrix equation and the truncation
involved, a simple exam-le is presented in Appendix A.

Blade Phasing Assumption Modification and Advantages

If all blades comprising the tail rotor are assumed to be
ideitical and equally spaced azimuthally, the relative
behavior of the tail rotor blade can be specified correspond-
ing to the types of basic tail rotor modes possible for the
rotor being considered. For example, an umbrella, backward
cyclic, Forward ryýiic, or reactionless blade mode can be
specified. •:Lth the relative motion of the blades specified,
"the contributions to the final governing equations provided
by blades other than the first blade can be defined in terms

of the corresponding contributions of the first blade. This

allows the array, as defined in Equation (37), to be

reduced in size by the removal of the arrays corresponding to
blades other than the first blade such that for the represen-
tation shown in Equation (37) the last two rows and columns of
arrays are not required. The swashplate to blade coupling

Sarray , and the blade moment -nd shears contribution

array k,lmUst be altered to include the contributions of

the additional blades. In the case of a gimballed or teeter-
ing rotor, modifications are also necessary in the blade array

L1 i since with a phasing relationship specified, thek, n]1
slope related boundary condition equations corresponding to
pinned blade root conditions may be automatically satisfied
for certain situations and must be replaced with moment
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related equations.

The assumption of identical blades allows the blade transfer
arrays and blade discontinuity column arrays of the mth blade
to be related to those of the first blade. This relationship
is exemplified by

3.i i(n-k)m
Lni = L, 1e and

Lk,n] im= [Wk,n] e m

This exponential relationship results due to the introduction
of the exponenfiil term when the first aerodynamic transfer
matrix is applied and is maintained by subsequent transfer
matrix application. On insertion of the relationships speci-
fied above into Equation (13) for the blade root variables,
the expression

jSNS Nf i(n-k)4m[k Nn{}* NS NS n

-"m n=-Nf ' gNS

•NS- {S 
(39)jZ',nl n m ,~n~l n

is obtained.

The relationship of the mth blade tip unshifted state
variables to the 1st blade tip unshifted state variables
(corresponding to the k = 0 equations) can be defined by the
form

: :0um = S0jle

where Nps is an integer denoting the type of relative blade
motion. In particular, for four blades, Nps = 1, 0, 1, and 2
corresponds to backward cyclic, umbrella, forward cyclic, and
reactionless type modes, respectively. It can be shown that

" {Sn}* {Sn}*-i (n+!Nps) •

this expression can be extended to m = 1neie

for the n frequency shifted tip vector variables. The same
Itype of relationship is valid for the blade discontinuity
variables. Thus, Equation (39) can be altered to a form in iiI.. 83



which the blade state variables at the blade rcot for the mth
blade can be defined in terms of the variables for the first
blade. This form is

NE Nf -i(Nps4k) Fr ,NSDke itI rg k ]
n=- Nf T 'I {•'kn}l (M) 1

6 INS NS
{k~n 1 (A2) Zl~k,njl nj

The blade root moment and shear state variable terms involved
in Equation (17) can be expressed by utilizing their defini-
tions from Equation (40) and the characteristic that

Nb -i (Nps+k) C

m e" = Nb (Nps4k)= 0,Nb,-Nb, etc)
m=l

Nh -i (Nps4k)4C
C= 0 (Nps+k)1 0,Nb,-Nb, etc)I.=

This exponential dependency results since the integer shifts,
im -im

in addition to the k shift, cancel the e and e depend-
encies in Equation (17). Thus, with the phasing assumption

the [FBk,n as defined previously will be multiplied by Nb
if Nps+k is equal to zero or plus or minus an integer multiple
of Nb, and will otherwise be an array consisting of zeroes.

In addition, the swashplate to blade coupling term in
Equation (29) is represented as a summation over the forces
applied by each blade km. The (k)m definitions, when

blade phasing is assumed, can be related to the P defini-

tion in a manner similar to that employed for the moment and
shear terms above. This exponential relationship, in conmbina-
tiiqo
tion with the exponential e term involved in the

-i(Nps+k+q)4o
summation, results in a summation over m of e
which is defined as Nb if Nps+k+q equals zero of plus or minus
an integer multiple of Nb, and equal to zero otherwise. Thus,

the ýBkfn]l array :s defined previously will be modified such
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that a row for which Nps+k+q = 0, -Nb, +Nb, etc., is multi-
plied by Nb; and if this condition is not met, then the row
is altered to consist of zeroes.

The previous discussion presented the alterations required for
the assumption of specified blade ihasinq relationships for
the types of tail rotors allowed, with the exception of

the modifications to the main blade array [Lk Thesek, I" 1

modifications are required for gimballed and teetering rotor
systems due to the modified slope boundary condition equations
automatically being satisfied for certain conditions on the
assumption of blade phasing. For a gimballed tail rotor, the

second and sixth ro, s of Lfk njl rupresent the n fren]1ency

NS NS
shifted contribution to (TX'l)k + i(Tyl)k and

NS NS

(xl)k - i(Tyl)k , respectively. It can be shown that with
the assumption of blade phasing, the first term being zero is
a valid boundary condition equation for Nps+k-i not equal to
zero or plus or minus an integer multiple of the total number
of blades Nb such that the second row of the blade array wo'ILd
be unaltered. If this condition is not satisfied, the contri-
butions of this term must be replaced by the representation of

NS NF

the n frequency shifted contribution to (Tl)k + i(Tyl)k
which is equal to zero if Nps+k-I equals zero of plus or minus
an integer multiple of Nb. The second term being zero is a
valid boundary condition equation for Nps+k+l not equal to
zero or Dlus or minus an integer multiple of Nb such that the
sixth ro. of the blade array would be unaltered. If Nps+k+l
is equal to zero or plus or minus an integer multiple of Nb,
then the sixth row must be replaced by the representation for

NS NSthe n frequency shifted contribution to (Tl N
1Tlk - 3iyl)k

which is equal to zero.

For a teetering rotor, the same type of modification occurs
for only the sixth row of the blade array with only

NS NS
-i( 0 and -i(ffl)k 0 conditions involved.
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The advantages of utilizing the blade phasing assumption are

significant. Basically, the size of the matrices is

significantly reduced. For instance, for a four-bladed rotor
attached to a fuselage-tailboom-fin structure, and a swash-

plate with Nmax equal to one, the matrix would be a

45 x 45 matrix which, when put in final form for Nf equal to

one, would result in a final governing matrix that would be135 x 135. On the other hand, with the p'iasing assumption,

the matrix would only be an 18 x 18 matrix and the

final governing matrix 54 x 54. The smaller size of these
arrays allows a significant reduction in running time,
primarily dependent on the solution of the final governing
matrix, as well as a greater accuracy of results; since the
larger the array, the more error in solution values. Also, if
only the blade phasing assumption is to be used, the dimen-
sioning of these and related arrays can be based on that
required for blade phasing such that a significant reduction
in core requirements is obtained.

EIGENVALUE AND EIGENVECTOR SOLUTION METHOD

The solution method applied to the final gcverning matrix
equation to obtain the eigenvalues and eigenvectors is based
on an approach referred to in Reference 9 as the modified
transfer-matxix method. The primary purpose of the method
used is to avoid the numerical accuracy problems due to the
taking of small differences of large numbers, which generally
occurs in transfer matrix techniques, particularly when the
frequency determinant is computed for higher natural frequen-
cies. The solution method employed iterates the eigenvector
lorresponding to the unknowns of the system simultaneously

with the iteration on the eigenvalue until the desired degree
of convergence of the eigenvalue is achieved.

The final governing matrix equation can be expressed in the

form i j= 0, where A consists of the [k,n]

matrices located in the form shown in Equation (38) and

5j consists of the column vectors located in the form

shown in Equation (38). The column vector can be

Li -'5~
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defined in genera• as {Xj} = + {•. where {X. represents

trial values for the unknown eigenvector and represents

corrections to the trial eigenvector. By substitution of this

definition for into the equation involving , the

expression = = results from which

j=- or jXj = 0 by premultiplication of both sid(*s of

the matrix equation by the inverse of [ij]" This problem of

indeterminate equations is overcome by normalization of a

particular fXj} quantity to a value of unity such that the

corresponding T. and Ej} quantities are equal to unity and

zero, respectively. This allows the removal of the column of

[ij] which multiplies the particular F. which is zero and the

row of Lij corresponding to the j index of the F. which is

zero such that a reduced array L[i.J results. Also, the

element of {5} and fF"j corresponding to the row removed fromA3is remved such that the reduced column arrays {3'} and

{F.} result. Thus, the resulting equation relating the

correction values and trial values for the unknowns is

P• = -{ T , which on premultiplication by the inverse

of provides the expression for { as

S- = •1( 4 1 )
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The validity of this equation can be demonstrated by con-
sidering a simple 3 x 3 final governing matrix equation ex-
pressed as

Al1  A 12  Al~ [13 '1
A21 A 22 A23 X2r

L 31 32 33J X3

which on replacing the {fj} by {%} + {fEj} provides the
¢1

expression

A11 A12 A13 1 1A12 A13

E21 22 X231 0 II [ A21 22 X23 .1
A31 A32 A33i 1[3 32 K3 3.3

where the quantity X2 was considered to be the unknown vari-
able normalized to unity. Removal of the second row of this

equation and the quantities in the second column of the [rij]

matrix involved in the terms on the left side of this equa-
tion (which are quantities multiplying zero) provides the
expression

131 33 3L 3 2 3ALj"l¶ 3j

Premultiplication of both sides of this ixpiession by the in-
verse of the array on the left side of tne expression
provides the following relationship:

7:

11l 13 11 12 13 X

L31 3 A 31 A 32  ~33i1

6 1which shows in general that the T. quantities are not neces-

sarily equal to the 3.quantities.)
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The object of the solution method is to obtai.n a value for

the eigenvalue for which the determinant of and the

Sej quantities approach zero. This method consists of con-

sidering trial eigenvalues until the convergence criteria
based on the changes in trial eigenvalues are satisfied or the
number of allowed iterations have occurred. In particular, J
for a given starting trial eigenvalue and a set of parameters

required for the analysis, the determinant of [AjjJ and the

correction quantities ". by Equation (41) are determined

based on the trial eigenvector quantities all being

equal to unity. The ej quantities are then added to the

quantities to define a new {.j. The new trial eigenvalue is

obtained by increasing the starting trial eigenvalue by a

specified percentage and a new determinant of and a new

set of . quantities calculated where the latter are used tobJ
Supdate the . From this point on the new trial eigenvalues

are based upon a slope interpolation scheme based on the pre-
vious two eigenvalues and corresponding determinant values of
the form

NE = Sc u- (Su- s )/(E -

where A denotes the determinant value of and CU, LA, and

NE subscripts denote the values for the iteration just com-
pleted, the iteration just prior to the one just completed,
and the next iteration, respectively. For the new eigenvalue
the determinant and set of c. are calculated and in turn are

used to update the . After each iteration after the first

two trial eigenvalues have been used a convergence criteria
test is applied such that a sufficient eigenvalue and eigen-• I I(NE S~u/ScuI Mer , !

vector have been obtained if < 1 where
JI'sNE 'CU)/5CUj *1 hrjj denotes the complex absolute value and Mer is an integer

defining the convergence limit desired. With the ,
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satisfaction of the convergence criteria or occurrence of
maximum number of iterations allowed, the blade and fuselage-
tailboom-fin structure transfer matrix procedures are applied
to the corresponding resultant eigenvector to obtain the
state variables at the inboard end of each lumped parameter
section in the section local coordinate systems which are
then transformed to the disc plane for the blades and fixed
coordinate system for the fuselage-tailboom-fin structure.

The resultant eigenvalue and eigenvector values represent the
behavior of the total system investigated. The analysis de-
veloped and the solution thereof provide the fundamental and
harmonic coefficients in a complex variable form of the real-
time swashplate, blade, and fuselage-tailboom-fin state vari-
ables. The fuselage-tailboom-fin structure state variablesat the ith section, after it has been transferred across as a
function of time, can be expressed in the general form

f(t)f(u) = (X() + iY(i)) eat ei(wt+PEt) (42)

p=-CO pP

where (i) and (i) are the real and imaginary part, respec-whr p yp

tively, of the state variable of interest and p is an integer
which when positive in value denotes an oscillatory behavior
at a frequency pS radians per second higher than that corres-
ponding to w. A negative value of k denoting the k frequency
shifted Laplace transformed state variables in the develop-
ment of the analysis previously discussed corresponds to a
positive value of p of the same absolute value. Also, in
the resulting computer proaram the output of the state vari-
able is in the order of p going from positive to negative
where the heacings are in terms of k/rev and not p/rev. By
conversion of the exponential function with the imaginary
argument in Equation (42) to a sine and cosiae equivalent

* representation, the form of this equation can be modified to

f(t) (i) = R R(i) e tcos(Wt + pot + 6(i) (43)

where R•i• • (i_ ((ii)2i)

pi) + y i) and (i) arctan(Y /X().where Rp = x +p PYan
ppp p p p

To be p-:actical, the summation can be truncated to the range

-Nf to Nf.
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The above state variable representation can be modified to

represent a blade state variable at the inboard end of the ith
section when the blade phasing assumption is not employed by
adding m subscripts to all blade-related variables. The
behavior of the mth blade is relative to the rotating coordi-
nate system of the mth blade. Thus, at t equal to zero, the
value of a state variable for the mth blade defined by the
form of Equation (43) is for the blade (m radians azimuthally

m
ahead of the fixed reference blade location. The variable (m

is not involved in the nonphased blade state variable defini-
tion of the form of Equation (43) since the contribution of
this variable has been included in the blade tip state vari-
ables by the analysis developed.

For the case of blade phasing, state variable coefficients are
obtained for the first blade such that the definition for addi-
tional blades is obtained by use of the phasing relationship

M•}i W n}i i(-n-NpS)m

m ~ = 1e O. From this relationship the p

related coefficients for a state variable of the mth blade can
be defined as the corresponding state variable of the firsti(p-Nps)•m

blade multiplied by e . Thus, for blade phasing the
representation used for a fuselage-tailboom-fin state variablewould be modified with the blade relatel quantities having a

subscript of 1 except for f(t) which would have an m sub-
script added and pP~t replaced with p(Qt+0m) - Nps(m. The re-

sulting mth blade state variables are referenced to their own
rotating coordinate system as discussed for the blades with-out phasing assumption.

The swashplate rotating frame displacement variable w•tt) can
be defined in the same form of representation as for the fuse-

lage-tailboom-fin structure with f(t) (i)replaced by w (t)

and X and Y replaced by X and Y respectively,
p P 9 ,P

which correspond to the coefficients of 9th spatial harmonic
of swashplate motion in the rotating swashplate coordinate
system at a frequency of w + pQ.

The basic iterative method of solution used to obtain the
solution eigenvalues and eigenvectors may require reason-
ably good guesses for the starting eigenvalae in order to
achieve the required convergence within a reasonable number
of iterations or to avoid converging on an eigenvalue obtained
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previously. To aid in estimating these initial values,
a scanning procedure was developed to automatically estimate
the starting eigenvalues for the basic iterative method of
solution within a range of stability and frequency values.
Basically, the desired frequency and stability value ranges

L> are divided into incremental steps. For each frequency, the
stability value is stepped from the lower range limit to the

upper range limit with the determinant of the matrix de-
termined for each stability value. If the imaginary part of
the determinant value changes sign during the stepping of the
stability value, the stability value and real part of the de-
terminant corresponding to the imaginary part of the deter-
minant being zero in value are obtained by interpolation. The
resulting real parts of the determinant corresponding to the
stability values which yield imaginary parts of the determi-
nant close to zero are then scanned with respect to frequency
values to determine if changes in sign of the real part of the
determinant occur. If so, then the stability and frequency
values corresponding to the real and imaginary parts of the
determinant close to zero in value are determined by inter-
polation and can be utilized as starting values for the
normal iterative solution method. This procedure is not
foolproof, however, since a reasonable step size of both
frequency and stability value is required to avoid missing
possible roots to the analysis developed.

[ I

I 
I
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DESCRIPTION OF OVERALL COMPUTER PROGRAM

The analysis discussed previously was utilized to develop aI digital computer program for the determination of air reso-
nance eigenvalues and corresponding mode shapes of a tail
rotor attached to a flexible fuselage-tailboom-fin structure.
The resultant computer program which was developed for use on
IBM 360 systems consists of several basic steps:

1. input of system parameters,

2. determination of intermediate terms,

3. blade transfer matrix application,

4. fuselage-tailboom-fin structure transfer matrix
application,

5. construction of [7kn] arrays and trial eigenvector

forcing functions to yield [ýi and {fy} arrays,

6. solution for determinant and eigenvector correction

array T.

7. trial eigenvalue scanning procedure,

8. main program logic control.

These steps will be clarified to various degrees. The system
parameters, which include model structural parameters neces-
sary to define the model configuration of interest,I environmental parameters necessary to define the operational
environment of the model, program logic control parameters
such as starting eigenvalues, convergence criteria and
scanning procedure variables, and aerodynamic data, are
required as input for the program. All of this data except
aerodynamic data is read into a storage array by defining the
variable array location and the variable value in floating
point form. This array of 2800 elements is constructed by
utilizing the first 200 elements for storage of environmental,
logic control, and model representation control parameters;
the next 2000 elements for storage of blade and fuselage-
tailboom-fin structure sectional data (50 elements per ,Sec-
tion); and the last 600 elements 5or a radial and azimuthally I
varying induced velocity "istribution, if desired. The
concept of this input form was to eliminate the necessity of
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a defined order of input such that input cards out of order
would not result in erroneous results or aborted computer runs
and also to allow several model configurations to be consid-
ered consecutively with only system variables inputted for
those that altered from the previous configuration. During
parametric investigations with the program, an additional
capability of this form of input was utilized. This capability
is the allowance of a variable to be modified to a new value
after previously being defined in the same set of input, such
that a basic input deck followed by input modifications can be
used for the specific configuration of interest. The airfoil
coefficient tables are required as input for each configura-
tion.

As a mechanism for reducing running time of the program for a
system configuration, some of the terms not a function of the
Laplace transform variables and coefficients multiplying
Laplace transform variables (intermediate terms) are computed
and stored so that these calculations do not have to be
repeated for each iteration eigenvalue.

The blade transfer matrix applications consist of two similar
forms; that used during the iterative procedure to obtain
solution eigenvalues and eigenvectors or scanning procedure,
and that used to obtain the blade state variables at the
inboard end of each blade section. During the iterative
procedure, the representation of the blade variables at the
hub - in terms of the blade tip and discontinuity unknowns -

is obtained for each trial eiqenvalue by successive multipli-
cation of the initial blade tip associated transfer matrices
and discontinuity columns by the individual lumped parameter
characteristic transfer arrays as each characteristic is
crossed in transferring from blade tip to hub. The individual
transfer matrices are. obtained by utilizing the stored inter-
mediate terms and the value of the trial eigenvalue. Also,
during the application of transfer matrices, the representa-
tion of the blade state variables at the discontinuity
locations, as required for the blade discontinuity equations,

-; is stored.

A trial eigenvalue is taken to be a solution eigenvalue when
either the difference between the trial eigenvalue and the
next predicted eigenvalue satisfies the convergence criteria
or the trial eigenvalue is that of the last allowed
iteration. When the solution eigenvalue is obtained, the
blade transfer matrix procedure is repeated for the solution
eigenvalue in the same manner as during an iteration, except
that the associated transfer matrices and discontinuity

. columns obtained at the inboard end of each section are
applied to the pertinent solution eigenvector variables to
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define the frequency unshifted and shifted section state
variables. The solution eigenvector is equivalent to the sum
of the trial eigenvector and correction eigenvector associated
with the iteration using the solution eigenvalue.

The fuselage-tailboom-fin structure transfer matrix applica-
tions are similar in concept to the blade transfer matrix
application, except that the transfer process proceeds in the
direction toward the tail rotor, the individual lumped
parameter transfer matrices are simpler for certain charac-
teristics, and interharmonic coupling is not involved. The
representation of the shifted and unshifted blade and fuselage-
tailboom-fin structure state variables for a triai •Igenvalue

provides the majority of terms necessary in the [~k n]

matrices as defined in Equation (37). The remaining terms,
which are related to the swashplate representation and dis-
continuity definition equations, can be obtained by direct
substitution of just the configurational parameters or in
combination with the matrix definitions of blade and fuselage-
tailboom-fin structure variables. The numerical construction

of the [, matrices is dependent on the degrees of freedom

of the hub-rotor shaft interface, as previously discussed.
The [ik nj matrices and the trial eigenvalue are used t°,

generate the and {%} arrays.

The determinant of the final matrix and the correction vector

{Ej} for a given trial eigenvalue are obtained simultaneously
33

by utilizing a sophisticated triangularization technique.
This technique operates on the total final governing matrix
and trial eigenvector forcing function in a manner such that
an iterative procedure to obtain the determinant and a matrix
inversion for the eigenvector correction array are not
required. This technique has proven to be much faster in
execution time and more accurate than the technique that is
utilized for a similar matrix manipulation in Reference 3.
It should be noted that the matrix solution technique is
carried out in double precision.

The scanning procedure to obtain initial starting eigenvalues,
as described previously, has been incorporated into the
program mainline as an independent control segment such that

95

S• •4 -



it is bypassed if the scanning procedure is not desired. If
the scanning procedure is utilized, the analysis equivalent to
a normal iteration loop is carried out for each eigenvalue of
a grid defined by the specification of the lowest stability
and frequency values to be considered, the size of the steps
in stability and frequency values, and the number of stability

and frequency steps to be taken to obtain the corresponding
determinant values. An interpolation schemt is employed to
determine possible roots to the polynomial which the final
matrix represents. These possible roots are then used as
starting values for the remaining control segment of the pro-
gram mainline pertaining to the determination of solution
eigenvalues and corresponding eigenvectors and mode shapes.

The main program logic control initially determine4, on the
basis of input parameters, whether or not the scanning
segment is to be employed prior to the iteration control
segment; and, if so, specifiez the operational procedure to
be employed for scanning. The main program logic control
then, on the basis of the number of starting eigenvaluesinputted or from the scanning procedure, convergence criteria,

and iteration limits, specifies the operational procedure to
be employed for the iteration control segment. The overall[terative system flow for the program is depicted in Figure 10.

Although the mathematical analysis for the representation of
coupled helicopter/tail rotor systems was developed for non-
identical blades arbitrarily spaced azimuthally, the develop-
ment of the computer program analytical coding was based on
the assumption of identical blades arbitrarily spaced
azimutnally. This assumption was employed to avoid the higher
core and tape (or disc) storage requirements necessary to
store and manipulate the blade-related information arrays for
nonidentical blades. Since this computer program will be
primarily used in the design or modification of coupled tail
rotor systems in which the blades are constructed as close to
identical as possible, the assumption of identical blades will
be sufficient for most applications. The program modifica-
tions which are required for considering rotor systems with
nonidentical blades, whether due to damage (e.g., ballistic
damage or partial blade failure) or design (e.g., variable
geometry rotor with nonidentical sets of blades), are not
complicated and can be easily added to the program. The
computer program blade representational capabilities were
further limited by the use of two sets of restrictions on the
dimension size of program array variables. The first set of
dimensional restrictions limits the maximum number of arbi-
trarily azimuthally spaced blades that can be considered
without use of the assumption of blade phasing to four by
restricting the size of the control rod-related arrays, the
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blade azimuthal position-related arrays, and the arrays
associated with the solution of the final matrix. The second
set of dimensional restrictions resulted from the reduction of
the size of the arrays associated with the final matrix solu-
tion to that required on the assumption of blade phasing,
which allows the consideration of a rotor consisting of an
arbitrary number of identical blades equally spaced azimuth-
ally. This latter set was implemented since most tail rotor
systems do consist of equally spaced identical blades, for
which the assumption of blade phasing prov..dtes an adequate
representation of the air resonance behavior without the
penalty of higher core requirements and running time. If this
restriction is ,.-t acceptable for a specific helicopter/tail
rotor configuration which has identical blades but unequal
spacing, only the dimensions need to be modified for the
computer program to be applicable.

High core requirements result due to the necessity of employ-
ing double precision real and complex variables in the
computer program to achieve convergence and accurate solution
eigenvalues, eigenvectors, and mode shapes on an IBM 360
system. The accuracy problems are prima:ily associated with
the mode shapes, since slight inaccuracies in the eigenvalue
and eigenvector are firther distorted as the transfer matrix
proct-dure is applied on the final pass for the mode shapes;
that is, as the procedure progresses along the structure of
interest, the mode shapes become more inaccurate. Thus, in
order to achieve accurate mode shapes, double precision is
required. To reduce core requirements, an overlay structure
was incorporated into the program; with the result that for
smaller final governing matrices, the combination of the main
program and the blade transfer procedure subroutines set the
core requirement -as in the case of NF = 1 and blade phasing.
However, with NF = 1 and without blade phasing for more than
one blade, the final governing matrix manipulation portion
for obtaining the determinant and eigenvector correction
array and the main program determine the core requirements.
Also, the larger the final matrix, the longer the running
time. Matrix multiplication subroutines have been utilized
in assembly language form to reduce matrix multiplication
time.
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GENERAL APPLICATION OF PREDICTIVE PROGRAM

TO A FULL-SCALE HELICOPTER

In order to investigate the effects of various system
parameters on the air resonance frequencies, mode shapes, and
stability characteristics of a full-sc.'le helicopter tail A
rotor system and its supporting structure, and to establish
the ability of the resultant predictive program, an overall
full-scale helicopter model was employed which is representa-
tive of a UTTAS helicopter configuration. This system
configuration has a tail rotor consisting of four identical
and equally spaced blades of the flexstrap type whose collec-
tive pitch is controlled by a swashplate control system. The
tail rotor drive shaft is attached to a tail rotor gearbox
which is mounted to the fin in such a manner that the mounting

flexibility can be represented by mutually orthogonal spring-
damper units of the torsional type. The remaining portion of
the overall model consists of the fuselage-tailboom-fin
structure.

The basic analytical representation models for various compo-
nents of the overall helicopter system employed in the
parametric sensitivity analysis were based upon the form
required by the analysis developed and coded into a computer
program which has been discussed previously. Thus, the basic
flexstrap blade model representation (including pitch horn)
consisted of a lumped parameter model representation of the
structural characteristics of the full-scale tail rotor flex-
strap blade configuration. The blade collective pitch, coning,
and uniform induced velocity values corresponding to the
desired thrust values were obtained by use of the simplified
mathematical representation of helicopter rotor behavior
presented in Reference 12. In the determination of these
thrust related values, an equivalent flap hinge was assumed,
and the contributions of the built-in linear twist included.
The blade pitch radial distributions were obtained by proper
superposition of the resultant collective pitch values and the
built-in linear twist. The prelag was assumed to be the
built-in geometric sweep of the blade configuration.

The basic fuselage-tailboom-fin structure model representation
consisted of a lumped parameter model representation of the
full-scale fuselage-tailboom-fin structure configuration
without inclusion of stabilizer fin surface. The basic
swashplate control system was represented by the definition of
the parameters required in the swashplate related analysis,
such as stiffnesses and geometric parameters. For the tail
rotor of interest, only collective flexibility of the swash-
plate was necessary. This was represented by the collective
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support spring. The basic control rods were represented with
the necessary values for orientation and length corresponding
to that representative of the UTTAr configuration. A slight
axial flexibility of the control rods was allowed. The value
for the drive shaft torsional flexibility was taken such that
the frequency of torsional oscillation of the tail rotor
inertiA was approximately 20 radians/second. The basic tail
rotor gearbox flexibility in two orthogonal directions was
taken such that the rocking motion in the two directions due
to hub mass and inertia was approximately 106 radians/second
(i.e., the gearbox was isotropically supported).

The various system parameters whose effect on the air resonance
modal behavior of the tail rotor system and/or fuselage-
tailboom-fin structure was investigated may be separated into
flight parameter and structural support parameter groups.
The former group consists of parameters such as tail rotor
rotational speed, advance ratio, collective pitch, coning, and
induced velocity field. The latter group consists of the
various structure parameters such as drive shaft torsional
flexibility, gearbox support flexibility, swashplate control
system flexibility, and fuselage-tailboom-fin structure flexi-
bility. The parametric investigations for hover to varyingdegrees were concerned with:

1. The effect of rotational speed and aerodynamic
thrust (thereby collective pitch, induced velocity,
and coning values) or, the cantilevered blade
behavior.

2. The effect of the above parameters with nominal
(basic) drive shaft torsional flexibility included
(reference configurations) on blade behavior.

3. The effect of the addition of tail rotor gearbox
support flexibilities, nominal (basic) and others,
to some of the reference configurations in regard to
blade behavior.

4. The effect of the addition of swashplate control
system collective Elexibilities, nominal (basic)
and other, to some of the reference configurations
in regard to blade behavior.

5. The effect of both the addition of tail rotor
Sgearbox support flexibility and swashplate control

system collective flexibility to some of the
reference configurations in regard to blade behavior.

6. The modal behavior of the nominal (basic) and a
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softer fuselage-tailboom-fin structure and the
effect of the addition of these fuselage-tailboom-
fin structure configurations to some of the reference
configurations in regard to fuselage-tailboom-fin
structure and blade behavior.

S7. The effect of inclusion of a flexible fuselage-
tailboom-fin structure, swashplate control system
collective flexibility, and tail rotor gearbox
flexibility on a reference configuration (total
Sys•tem) in regard to both fuselage-tailboom-fin
structure and blade behavior.I The parametric investigations for forward flight (advance

ratios greater thain zero) to varying degrees were concerned
with:

1. The effect of advance ratio, rotational speed, drive
shaft torsional flexibility, and thrust (thereby
collective pitch, inducity and coning values) on
the cantilevered blade behavior.

2. The effect of the above parameters in combination
with the effect of the addition of swashplate control
system collective flexibility and tail rotor gearbox
support flexibility on the blade behavior (complete
forward flight configurations).

3. The effect of the parameters involved in the
complete forward flight configurations in combina-
tion with the effect of the addition of fuselage-
tailboom-fin structure flexibility on the blade and
fuselage-tailboom-fin structure behavior.

In the investigation of the effects of advance ratio on the

modal behavior of the various tail rotor configurations, two
different approaches were taken in regard to the thrust
related parameters. The first was to consider the addition
of forward flight velocity to hover configurations without
altering the thrusv related parameters such that the changes
in modal behavior of the tail rotor system would be due only
to changes in advance ratio. The second approach was to not
only consider the addition of forward flight velocity to hover
configurations but also to reduce the thrust acting on the
tail rotor, since the thrust required from a tail rotor in
actual flight decreases as the advance ratio increases. A
more realistic thrust for the tail rotor in forward flight was
used with the mathematical representation provided by Refer-
ence 12 to obtain a modified set of thrust related parameters
(collective oitch, coning, and induced velocity values) for
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this apprcach. The use of both of these approaches allows the
determination of the effect of forward flight velocity, by
itself and in combination with a thrust reduction, on the
modal behavior of the tail rotor systems of interest.
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DISCUSSION OF RESULTS

The setup of the computer program on a computer system and its
subsequent execution to carry out a parametric sensitivity
analysis regarding the modal behavior of a helicopter configu-
ration provided several results. These results were not only
of a numerical nature such as frequencies, stability charac-
teristics, and mode shapes but also provided information
pertaining to the computer program operational behavior,
limitations and possible future capabilities. These various
types of results obtained from use of the computer program
will be discussed.

PROGRAM OPERATIONAL RESULTS

Perhaps one of the most relevant results of the program opera-
tion was the ease with which personnel at the Fort Eustis
computer facility, who were unfamiliar with the computer
program and its development, were able to obtain and execute
the computer program object module for their specific IBM-360
digital computer system. The object module is constructed as
a compiled and link-edited version of the source program which
consists of a main program and several subroutines in
FORTRAN IV language and matrix multiplication subroutines in
assembler language placed in an overlay structure. This over-
lay structure in its final form minimized core requirements to
250 K for the dimensions utilized. In fact, incompatibilities
in program coding capabilities between that required on the
computer utilized for developmental purposes and that required
for the Fort Eustis computer system did not occur, such that
debugging of the computer program on the Fort Eustis computer
system was not required. It is believed that the resultant
computer program can be put up on other existing IBM-360
computer systems with the same ease. For CDC 6600 computer
systems, modifications to the program prior to compiling wouldI> be necessary since double precision variables are not required
and the overlay structure is defined in a different manner for
this type of computer system. These changes are not likely to
be difficult.

During program operation, the time required per iteration for
various runs was found to be primarily dependent on the degree

-' of interharmonic coupling (controlled by the program variable
equivalent to Nf) allowed in the system configuration being
investigated. On the Fort Eustis computer system, runs for
Nf = 0 (no harmonic coupling) required between 4 to 5 seconds
CPU per iteration (calculations involving a trial eigenvalue)
such that if convergence is obtained in seven iterations, 28
to 35 seconds CPU time would be required to obtain a solution
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eigenvalue, eigenvector and corresponding mode shapes. For
Nf = 1 (+ and -1/rev harmonic coupling allowed), runs requirecd
approximately 35 seconds CPU time per iteration; such that if
"convergence is obtained in seven iterations, 175 seconds - or,
roughly, 3 minutes - of CPu time would be required to obtain
a solution eigenvalue, e-genvector and corresponding mode
shapes. These CPU estimates were obtained by dividing the
time required for various program runs consisting of several
starting eigenvalues by the respective total number of itera-
tions involved in the program run, thus smearing out the CPU
time required for determination of the intermediate terms and
mode shapes. It should also be noted that these time esti-
mates are based on runs employing the assumption of blade
phasing in which the relative motion of the blades is
specified.

Based on the degree of inclusion of fuselage representation in
various runs, the major portion of the CPU time required for a
run is not due to the transfer matrix operations, but rather
to the operations involving the solution of the final matrix
for its determinant and correction eigenvectors. The transfer
matrix operations are fast due to the use of assembler

language subroutines for transfer matrix multiplications.
The inclusion or exclusion of aerodynamic considerations would
not result in a significant difference in running time, since
the Fourier analysis involved is done at the program level of
generation of intermediate terms which are used directly in•0 the construction of the aerodynamic transfer matrices. The
running time is for the most part related to the number of
terms involved in the final matrix; such that for Nf = 1, nine

l times as many terms (nine times as many arrays) are

involved as in the Nf = 0 case where, depending on type of
mode, the running time is increased by a factor of seven to
nine. On a similar basis for four blades without the assump-
tion of blade phasing, the CPU times required for Nf = 0 and

' .4.;f = 1 runs would be increased by a factor of seven to nine
compared to those mentioned previously, since each array

denoted by would increase in size by a factor of nine

due to inclusion of arrays associated with the additional
blades, as can be noted in Equation (37).

As noted above, the use of the assumption of blade phasing
requires significantly less program running time to obtain a
solution eigenvalue than when this assumption is not used.
The reduction of computer program dimensions allowed by the
use of the assumption of blade phasing results in a computer
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program requiring significantly less core storage than is
required by a program with independent blade representation.
In addition to these advantages of the use of the assumption
of blade phasing, other advantages were apparent during the
execution of the parametric sensitivity analysis. One advan-
tage is associated with the fact that the use of the blade
phasing assumption reduces the size of the final matrix and
removes from consideration the solution eigenvalues for types
of blade modes other than that specified by the assumed blade
phasing relationship. For example, if reactionless blade
behavior is assumed, the solution eigenvalues for the umbrella,
forward cyclic, and backward cyclic modes cannot be obtained
unless they are identical to the solution eigenvalue for the
reactionless modes. This blade phasi:ng assumption character-
istic allows the solution eigenvalues for different types of
blade modes occurring in a narrow range of eigenvalues to be
determined with less difficulty than would be encountered
without use of the assumption of blade phasing.

I1
An additional advantage is that with faster running time on
use of the assumption of blade phasing, the air resonance
behavior can be obtained for simpler system configurations
to provide starting trial eigenvalues for slightly more
complex configurations. These solution eigenvalues can then
be used as starting values for even more complex configura-
tions. This procedure can be continued until the air
resonance behavior of the most complex system of interest
which the program is capable of representing is obtained.
This procedure, with the use of blade phasing, reduces the
amount of engineering judgment required for starting eigen-'
values of complex systems such that the likelihood of
successful convergence of a run is significantly enhanced.

Air resonance mode shapes resulting from program execution
consist of real and imaginary parts, as discussed previously.
These complex number mode shapes not only are damped by the

e term but also are such that the phasing p associated

with the motions at radial stations on the bla'7e differs from
station to station. This motion may hk described as similar
to flutter motion, with phasing of blade x.-tion varying
radially, instead of the type of motion obtained from free
vibration analyses in which the motions at all radial stations
of the blade are in phase. Of course, the analysis developed
for this computer program will provide free vibration results

H if aerodynamics and damping are not involved in the model.

V •PRESENTATION OF SELECTED NUMERICAL RESULTS

ili
In order to ascertain the effects of various tail rotor and
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support structure parameters on the air resonance modal
behavior of a four-bladed flexstrap tail rotor system, the
resultant computer program was used to determine the air reso-
nance mcdal behavior of many tail rotor system configurations
with varying degrees of complexity. This computational
exercise was undertaken to determine the capability of the
resultant computer program as a design tool for the develop-
ment of new, or the modification of existing tail rotor
systems by providing adequate prediction of the air resonance
modal behavior of these systems.

In the analyses that were conducted, the various system
parameters were varied independently or in combination with
other system parameters. The general context of the para-
metric sensitivity investigation was outlined previously. Due
to the numerous representational configurations of interest
and the number of air resonance modes of reactionless,
umbrella, forward cyclic, and backward cyclic types possible
for each configuration, the computational effort for the most
part was restricted to the first flapwise, first edgewise, and
first torsion blade modes and the lowest six fuselage modes.
Even though this restriction was employed, an extremely large
amount of results were obtained. For the purposes of the
report, only the results which show general trends of signi-
ficant interest will be presented.

Effect of Thrust on Basic Blade Modes

For the basic flexstrap tail rotor configuration in hover,
cantilevered to a rigidly supported hub and having a rigid
control system, the reactionless, umbrella, forward cyclic,
and backward cyclic blade air resonance modes would have
identical eigenvalues - with the only difference being due to
the relative phasing of the blade mode shapes. The basic
(reactionless) first flapwise, first chordwise, and first
torsion air resonance modes for three different thrust values
and for two rotor speeds are presented in Table 1. The

/ Inominal tail rotor thrust and rotor speed were taken as
""' 1300 pounds and A. 140 radians per second, respectively. The

thrust values are not directly used by the program, but rather
the associated coning, collective pitch, and uniform induced L
velocity theoretically related to the thrust value and
rotational speed.KThe real part of the eigenvalue represents the stability or H

Sdamping of the blade motion where a negative value denotes a
stable blade motion and a positive value denotes an unstable
motion. The imaginary part corresponds to the frequency of
the blade motion. At each thrust value the real and imaginary
parts of the eigenvalues for the first torsion air resonance ]
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TABLE 1
BASIC (REACTIONLESS) AIR RESONANCE MODES

Predominate Theoretical ThrustS~Mode Type "M75% nominal nominal 126% nominal

first flapwise -28.82+201.8i -28.51+199.2i -26.28+193.9i
= noniinal

S~first flapwise
f 90% nomina -25.09+177.4i -25.06+175.Oi -28.08+173.OiS• = 90% nominal

S~first chordwise •
fo3.59+213.3i 4.25+209.3i 5.08+204.3i

= nominal
first chordwise

90% nominal 3.07+203.7i 3.64+197.7i 6.22+190.9i

.first torsion *4.27+329.7i -25.13+331.9i -28.09+346.6i
2 =nominal

mode decrease with a reduction in rotor speed. The variations
of these three types of modes with change in rotor speed pro-
vide changes in frequency consistent with the behavior of
rotor natural frequency fan plots of most rotor systems, with
the exception that mode switching between the first chordwise
and first flapwise moces may occur at a higher rotor speed
than was investigated. With the inclusion of a better repre-
sentation of the flexstrap mean orientation, which would
provide more coupling of blade motion, this phenomenon may
occur at a lower rotor speed and, possibly, in the normal
operating rotor speed range.

All three types of blade motion modes (first flapwise, first
chordwise, and first torsion) exhibit strong flapwise-
chordwise coupling, with the first torsion mode exhibiting
strong torsion-flapwise and torsion-chordwisc coupling also.
This strong coupling is the result of the elastic coupling
in the flexstrap blade retention. In general, an increase in k
thrust increases the coupling noted above for the first flap-
wise and first chordwise modes, with the greatest effect noted
for the lower rotor speed. For the first torsion mode the
torsion-flapwise coupling decreased with increasing thrust,
whereas the torsion-chordwise coupling increased.

Effect of the Addition of Drive Shaft Torsional Flexibility

C ,The inclusion of drive shaft torsional flexibility in the A
tail rotor system configuration resulted in a modification of
the previous umbrella modes which were coincident with the '
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I basic reactionless modes. The greatest effect of the drive
shaft torsional flexibility was on the fiist chordwise mode.
With the nominal drive shaft torsional flexibility defined as
that necessary for a shaft torsional frequency of %,' 20 radians
per second, based on the hub and rotor inertia, the first
chordwise umbrella mode dropped in frequency from that of the
basic system first chordwise umbrella mode frequency (same as
reactionless) to a value in the neighborhood of 20 radians
per second. Since the second chordwise umbrella mode fre-
quency would be expected to increase in value slightly due to
the addition of drive shaft torsional flexibility, there would
not be a chordwise umbrella mode in the neighborhood of the
first basic (reactionless) chordwise frequency. The eigen-
value results obtained for the nominal drive shaft torsional
flexibility and the thrust and rotor speed values utilized in
the previous section are given in Table 2.

TABLE 2
UMBRELLA AIR RESONANCE MODES WITH INCLUSION
OF NOMINAL DRIVE SHAFT TORSIONAL FLEXIBILITY

Predominate Theoretical Thrust
Mode Type 75% nominal nominal 126% nominal

first flapwise -25.18+203.7i -25.02+203.3i -21.13+197.9i

= nominal

first flapwise
S90% nominal -21.64+177.4i -20.10+175.4i -20.30+175.4i

first chordwisefirs hnomwis -0.39 +20.8i -0.50 +19.3i -0.61 +17.1i
S1 nominal

first chordwiseS= 90% nordinal -0.43 +21.7i -0.59 +19.8i -0.82 +15.9i

fir-st torsion -22.55+319.Oi -22.90+317.7i -25.25+328.li
nominal

first torsion90s nomiona -20.24+303.Oi --21.28+306.li -21.44+302.4i• sl = 90% nominal

The effect of an increase in thrust related parameters and
rotor speed on the first flapwise, first chordwise, and first
torsion air resonance modes can be seen in Table 2. On com-
parison of these results with those of the reactionless air
resonance modes of the basic tail rotor system, the primary
effect of the inclusion of drive shaft torsional flexibility
is on the first chordwise air resonance umbrella modes. In
particular, the frequencies corresponding to this type of
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blade mode are reduced to values close to that on which the
nominal drive shaft torsional flexibility was based; and the
associated stability values are altered such that these modes
are slightly stable instead of unstable, as they were for the
basic tail rotor system. The effects of the nominal drive
shaft torsional flexibility on the first flapwise and first
chordwise umbrella air resonance mode eigenvalues were of less
significance. However, as a result of the reduction of the
first chordwise air resonance mode frequencies, the degree of
coupling of chordwise blade motions with flapwise blade
motions and torsional blade motions in the first flapwise,
first chordwise, and first torsion umbrella air resonance
modes was significantly reduced. The results shown in
Table 2 are as would be expected on inclusion of the nominal
drive shaft torsional flexibility.

Effect of Control System Collective Stiffness

The inclusion of a finite control system collective stiffness,
in addition to the drive shaft torsional flexibility, modified
the umbrella air resonance modes that were discussed in the
previous section. The forward cyclic and backward cyclic air
resonance modes are not affected by a variation in the control
system collective stiffness because these modes are not
coupled to collective control system motion, but are coupled
to cyclic control system motion. It should be noted, however,
that for an anisotropically supported control system, which is
not the case for most tail rotor systems, the cyclic air reso-
nance modes would be affected due to the cyclic variation of
control system stiffness. The eigenvalues obtained for the
first flapwise, first chordwise, and first torsion umbrella
air resonance modes are presented in Table 3 for three values
of control system collective stiffness and a set of conditions
for which results were presented in the previous sectic

The effect of a finite control system collective stiffness and
rotor speed on the first flapwise, first chordwise, and first
torsion umbrella air resonance mode eigenvalue can be ascer-
tained from Table 3. On comparison of the above results with
those of Table 2 corresponding to 75% thrust, the most signi-
ficant effect of the control system collective stiffness is on
the first flapwise umbrella air resonance eigenvalues, which
are significantly changed. An important result of this
comparison is the lack of a significant change in the first
torsion umbrella air resonance frequency. This behavior is
different from that common to articulated rotor systems. This
modal behavior is reasonable for flexstrap blades on considera-
tion of the elastic coupling effects which occur with this type
of blade retention. In particular, for a rigid control system,
the point of control rod attachment to the pitch horn is not
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TABLE 3
UMBRELLA AIR RESONANCE MODES WITH INCLUSION

OF DRIVE SHAFT TORSIONAL FLEXIBIulTY AND
CONTROL SYSTEM COLLECTIVE STIFFNESS

Predominate Control System Collective Stiffness

Mode Type
115% nominal nominal 85% nominalfirst flapwise

fs fnominal -18.07+174.7i -17.30+170.9i -16.39+166.li

first flapwise -16.88+157.6i -16.30+154.9i -15.60+151.5iS=90% nominal" ""

first chordwise -0.43 +19.1i -0.44 +18.8i -0.49 +18.0i
= nominal

first chordwise
a = 90% nominal -0.51 +20.0i -0.51 +20.0i 0.52 +!9.7i

first torsion S= nominal -35.55+323.8i -39.21+322 .7i -43.00+319 .8i

first torsion90% nosiona -28.19+306.2i -31.07+305.9i -34.75+303.7i
_____90% nominal_ " " "

allowed to move. Thus, a flapwise motion of the blade
requires the blade to also rotate against the flexstrap
torsional stiffness such that the flapwise stiffiess is
strongly coupled to the flexstrap torsional stiffness. For
a control system having finite collective stiffness, the
control rod attachment point is allowed to move in a flapwise
direction. In this case, the flapwise stiffness is less
dependent on the flexstrap torsional stiffness and decreases
in value such that a lower flapwise umbrella frequency
results. The torsional stiffness of the flexstrap and the
stiffness of tritn control system combine in a manner such that
the apparent effect of control system stiffness on the effec-
tive torsional stiffness is minor for the control stiffnesses
used. Thus, the first torsion umbrella frequency changes only
slightly as the collective control system stiffness decreases.
The variation of the umbrella mode eigenvalues depicted in
Table 3 as the control system collective stiffness decreases
would normally be expected for a flexstrap rotor.

The allowance of control system collective stiffness, besides
modifying existing modes, also allows additional umbrella
modes resulting from the control representation. For the
nominal control system collective stiffness, control system
umbrella modes were obtained having eigenvalues of
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(-4.69+358.1i) and (-6.01+341.6i) for the nominal rotor speed

and 90% nominal rotor speed, respectively. The effect of
control system collective stiffness on the coupling of blade
motion for the three types of blade modes was minor. In
addition, as the control system collective stiffness decreased
the amplitude of cor.trol system deflection increased for all
three types of blade modes investigated, as would be expected.

Effect of Gearbox Support Stiffness

A tail rotor system attached to a gearbox, which in turn is
attached to the ground through springs, will affect the cyclic
air resonance modes of the tail rotor system. Since the
addition of finite tail rotor gearbox support stiffness can
only provide cyclic motion to the tail rotor hub via the
rocking motion of the tail rotor shaft, the reactionless and
umbre, la air resonance modal behavior will not be affected.

Prior to presenting the results obtained for the cyclic air
resonance modes, a discussion of gearbox-blade coupling
behavior for cyclic modes is advantageous. Since the blade
motion associated with a blade cyclic frequency occurs in a
rotating reference frame and the gearbox and tail rotor shaft
motion in a fixed reference frame, the blade motion for a
given cyclic blade frequency will not couple with a gearbox
motion at the same frequency. Instead, blade motions for a
backward cyclic mode will couple with g,-arbox rocking motion
occurring at a frequency 1/rev below that of the corresponding
backward cyclic blade mode. Thus, if the gearbox basic rock-
ing frequency is close to 1/rev below that of a backward cyclic
blade mode, strong coupling of gearbox and blade motion will
occur and cause a significant alteration of the modal behavior
of the blades. On the other hand, the blade motions for a
forward cyclic mode will couple with gearbox rocking motion
occurring at a frequency 1/rev above that of the forward
cyclic blade mode.

Some of the forward and backward cyclic blade air resonance
eigenvalue results obtained for the basic tail rotor system

* attached to a tail rotor gearbox using the rotor speeds and
thrust of the previous section, the hub mass and inertias
corresponding to the fulJ.-scale helicopter model, and three
isotropic gearbox suppor: stiffnesses are presented in
Table 4. Also presented in this table are results for cyclic
blade modes which correspond to gearbox rocking frequencies
1/rev above or below that of the blade motion, depending on
the type of cyclic mode involved (denoted as gearbox modes).
These latter results were obtained during program runs to
determine flapwise and chordwise cyclic modes of the blade.
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TABLE 4
CYCLIC MODE AIR RESONANCE EIGENVALUES

FOR THE BASIC TAIL ROTOR SYSTEM
WITH ISOTROPICALLY SUPPORTED GEARBOX

Predominate Isotropic Gearbox Support Stiffness

Mode Type infinite 9 X nominal nominal

Backward Cyclic
•i• first chordwise

firs hormwal 3.59+213.3i 3.31+211.7i -8.58+205.7i
Q= nominal

first chordwise 3.07+203.7i 2.80+202.1i -9.37+193.Oi
2 = -90% nominal

first torsion -24.37+329.7i -25.41+331.3i -24.66+328.7i
a = nominal

first torsion
S= 90% nominal -21.81+317.8i -21.56+319.Oi -22.32+317.6i

gearbox mode
S= nominal none NO* 0.00+246.5i

gearbox mode= 90% nominal none NO 0.00+232.1i

Forward Cyclic

first flapwise -28.82+201.8i -17.48+205.4i -17.48+205.4i
S-nominal"

first flapwise
P =s90% nominal -25.09+177.4i -16.57+180.6i -16.56+180.6i

first torsioni nomsion -24.37+329.7i -24.86+330.4i -24.86+330.4i

first torsionS90%s nomsional -21.81+317.8i -22.72+318.7i -22.73+318.7i• i R = 90% nominal

gearbox mode none 0.00+179.6i NO
= nominal

gearbox mode90% nominal none 0.00+193.9i NO

* Not obtained during parametric investigation.

The effect of finite gearbox support stiffness on the forward
and backward cyclic blade air resonance eigenvalues can be
noted in Table 4. The results are as generally would be
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expected, considering the gearbox rocking motion-blade motion
coupling that occurs for the various mode types and gearbox
support stiffnesses that are presented. Unfortunately, the
basic gearbox rocking frequencies corresponding to the nine
times nominal and nominal gearbox stiffness do not couple
strongly with the first flapwise, first chordwise, and first
torsion cyclic air resonance modes. Thus, the results
depicted show minor effects of the gearbox support stiffness
except for the first chordwise backward cyclic air resonance
mode for the nominal gearbox support stiffness, which does
have enough coupling for some effect to be noted. For this
air resonance cyclic mode, the frequency was reduced and the
mode became stable as a result of the slight coupling of the
bla;-e motions to the gearbox rocking motion which provides
aerodynamic damping. The frequencies provided in Table 4 for
gearbox modes correspond to that of the blade motions such
that the basic gearbox rocking frequency is 1/rev below the
frequency provided for the backward cyclic modes and 1/rev
above the frequency provided for the forward cv' 'c modes.
Also, because of the flexibility in the blades, the blade
motion for the gearbox modes included elastic motion in addi-
tion to motion resulting from translation and rotation of the
rotor hub due to the rocking of the gearbox.

The effect of anisotropic gearbox support stiffness was inves-
tigated briefly for the nominal rotor speed, 75% nominal
thrust, and for the average of the gearbox support stiffness
in the two mutually orthogonal directions being equivalent to
the nominal isotropic gearbox support stiffness values. With
the use of anisotropic gearbox support stiffness, the
stability of the backward cyclic gearbox mode became much
more stable without the frequency changing significantly.
Because of the minor degree of coupling of gearbox motion and
blade motion as a result of the gearbox support stiffness
utilized, the forward cyclic blade modes (first flapwise,
first chordwise, and first torsion) were essentially
unaffected by anisotropy of the gearbox support stiffness.
Similarly, the effect of gearbox support stiffness anisotropy
on the backward cyclic blade air resonance modes was insig-
nificant except for the first chordw4 se backward cyclic mode
for which the frequency decreased slightly and became less
stable as the anisotropy of the gearbox support was increased.

Modal Behavior of Tail Rotor System with All Allowed
Flexibilities

The modal behavior of a tail rotor system consisting of the
basic tail system with finite gearbox support stiffness,
finite collective control system stiffness, and drive shaft
torsional flexibility can be ascertained on the basis of
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knowledge of the four types of air resonance modes based on
consideration of the system parameters which affect these
various modes. For example, the cyclic air resonance modes
are only dependent upon the gearbox support stiffness param-
eters. Thus, for a tail rotor system configuration which
includes the various stiffness parameters for which the
eigenvalues of the affected types of air resonance modes have
been determined, the eigenvalues corresponding to the four
types of air resonance modes can be obtained from Tables 1 0

E through 4. However, if a tail rotor system is to include an
anisotropically supported control system, the control systemI representation will then affect the cyclic blade modes such
that for correct cyclic modal behavior determination, both the
control system and the Lail rotor gearbox representation must
be considered simultaneously.

Effect of Advance Ratio on the Zas;c Tail Rotor Attached to aSFlexible Drive Shaft

The dynamic characteristics of the basic tail rotor system
with drive shaft flexibility operating at an advance ratio
other than zero will be modified from the hover results due to
the aerodynamic blade interharmonic coupling that is present.
Due to this coupling, cyclic air resonance mode eigenvalues
will be altered such that they will not be coincident with the
reactionless air resonance modes of the system. In investi-
gating the effects of advance ratio on the modal behavior of
this tail rotor system for the nominal drive shaft flexibility
and different rotor speeds, modified and unmodified thrust
related parameters were used. The unmodified thrust param-
eters, used in hover configurations, correspond to 75% nominal
thrust. The modified thrust related parameters correspond to
12% nominal thrust, which is more realistic for a tail rotor
in forward flight than the tail rctor thrust required in hover.
The reactionless air resonance eigenvalues obtained for the
nominal rotor speeO for both unmodified thrust related param-
eters and modified thrust related parameters are presented in
Table 5.

The umbrella and cyclic ai- resonance mode results obtained
are not presented above sinre they exhibit the same general
trends as the reactionless air resonance modes above, except
for the first chordwise umbrella air resonance mode. This
mode, only slightly stable for hover, at an advance ratio of
0.3 was almost neutrally stable for unmodified thrust related
parar.eters and was slightly unstable for ;D.odified thrust
related parameters. The effect of advance ratio on the fre-
quency of this mode was insignificant, but the effect of using
the modified thrust parameters resulted in an increase of the

* frequency from 20.8 radians per second to 25 radians per

114

[.~



MI N
TABLE 5

EFFECT OF ADVAN4CE RATIO ON REACTIONLESS MODES OF
BASIC TAIL ROTOR SYSTEM WITH H

DRIVE TORSIONAL FLEXIBILITY AND NOMINAL ROTOR SPEED*h

Predominate Advance Ratio
Mode Type 0.0 0.1 0.3

first flapwise -28.82+201.8i -29.95+201.8i -30.37+208.3i

-26.88+204.5i -29.53+209.2i

first chordwise 3.59+213.3i 3.74+213.3i 3.06+213.1?
0.44+221.8i 0.29+223.2i

first torsion -24.37+329.7i -23.28+330.Oi -21.28+330.5i
-21.59+322.9i -16.73+321.7i

*The upper row of eigenvalues opposite mode type corresponds
to values obtained for 75% nominal thrust without modifi-
cation of thrust related parameters, and the subsequent row
corresponds to values obtained for thrust related parame-
ters associated with a 12% nominal thrust at each advance
ratio.

second. In general, the frequencies associated with the four
types of first flapwise air resonance modes increased as the
advance ratio was increased independent of the set of thrust
related parameters utilized, whereas the effects on the
stability of these modes were minimal. For the first chord-
wise reactionless and cyclic air resonance modes, the greatest
change in eigenvalues resulted due to the change in thrust
related parameters rather than advance ratio. For these
modes, the use of the modified thrust related parameters
increased the frequencies and significantly reduced the degree
of instability. For the four types of first torsion air reso-
nance modes, the greatest effect was also due to the use of
the modified thrust related parameters which reduced both the
frequency and stability of these modes.

Effect of Advance Ratio on the EigenvalUes of a Tail Rotor
System with Control System, Gearbox, and Drive Shaft
Flexibilities

In this part of the parametric sensitivity analysis, the
effect of advance ratio was investigated by considering only
changes in flight velocity to occur while maintaining the
thrust related parameters corresponding to 75% thrust for
three advance ratios and by considering the thrust related
parameters corresponding to 12% thrust at an advance ratio of
0.3 The rotor speed, control system collective stiffness,
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gearbox support stiffness and drive shaft torsional flexi-

bility used correspond to those which have been referred to
in previous sections as the nominal values. Some of the
eigenvalu-! results obtained for the umbrella, forward cyclic,
and backward cyclic air resonance modes for the advance ratios
of the previous section are presented in Table 6.

TABLE 6

EFFECT OF ADVANCE RATIO ON THE EIGENVALUES OF A TAIL ROTOR
SYSTEM WITH DRIVE SHAFT TORSIONAL, CONTROL SYSTEM, AND

GEARBOX SUPPORT FLEXIBILITIES

Predominate Advance Ratio

Mode Type* 0.0 0.1 0.3

Umbrella

first flapwise -17.30+170.9i -17.26+171.6i -14.94+169.7i
-13.83+173.4i

first chordwise -0.44 +18.8i -0.33 +18.5i 0.41 +17.1i
0.18 +24.7i

first torsion -39.21+322.7i -37.92+322.9i -32.09+326.7i
-24.69+320.4i

Backward Cyclic

first chordwise -8.58- 205.8i -8.73+205.3i -7.29+201.2i
-6.92+219.3i

gearbox 0.00+246.5i 0.004-246.5i 0.00+246.5i
0.00+246.5i •

first torsion -24.66+328.7i -24.63+328.3i -15.08+310.0i
S~-25.09+326.0i

1 Forward Cyclic

first flapvise -17.48+205.4i -17.90+205.7i -20.31+202.8i
-30.75+2.2. 0i

first torsion -24.86+330.4i -23.80+330.7i -21.29+330.7i
-16.57+321.7i

*The same convention for placinc! of eigenvalues corres-
ponding to thrust related parameters as used for the
previous table was also employed for this table.
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As can be noted in Table 6, the stability and frequency
characteristics of the umbrella, forward cyclic, and backward
cyclic air resonance modes do not change significantly as the
advanct ratio increases from zero to 0.1. However, except for
the gearbox modes, significant changes in stability and fre-
quency values do occur as the advance ratio is increased from
0.1 to 0.3. These changes result from the interharmonic blade
coupling which is a function of the forward velocity and the
interharmonic coupling provided by the additional degrees of

r freedom of the gearbox and control system support configura-
tions. Not only are the stability and frequency characteris-
tics affected significantly by the increase in advance ratio
to 0.3 but also the coupling of blade motions corresponding to
the eigenvalues is altered significantly. It should be noted
that at an advance ratio of 0.3 the first chordwise umbrella
air resonance mode becomes unstable regardless of whether or
not the modified thrust related parameters are utilized. This
result is reasonable since the first chordwise umbrella modes
of the basic tail rotor system with drive shaft torsional
flexibility were only very slightly stable at an advance ratio
of 0.3. A slight destabilizing effect on these modes due toi addition of finite control system stiffness is sufficient to
make the modes unstable.

Fuselage-Tailboom-Fin Structure Modal Behavior
The nominal fuselage-tailboom-fin structure lumped parameter

model was based upon a full-scale UTTAS configuration. AS~softer than nominal fuoelage-tailboom-fin structure, in which
the section stiffnesses in three directions were reduced by a
factor of two, was also investigated. Whereas all previous
results presented were obtained by assuming the tail rotor hub,
or gearbox supports (if gearbox included) to be essentially
cantilevered to ground, the calculations for configurations
involving the fuselage-tailboom-fin structure were based on
the asqumption of a free-free system (nose to tail). The
first six free-free fuselage-tailboom-fin structure eigen-
values for the nominal and soft configurations are presented
in Table 7.

All of these modes except the first and second vertical
bending modes exhibit a high degree of vertical-lateral-
torsion coupling. The eigenvalues presented in Table 7 for
the nominal fuselage-tailboom-fin stiffness configuration
compare favorably with those obtained for this configuration
by the daveloper of the UTTAS configuration, based on a beam
analysis and NASTRAN. As would be expected, all of the fre-
quencies obtained for the softer fuselage-tailboom-fin
structure are approximately 30% lower than those obtained for•: • the nominal fuselage-tailboom-fin structure.
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TABL-1 7
FFUSELAGE-TAILBOOM-FIN STRUCTURE

s ETGENVALUES

Predominate Fuselage-Tailboom-Fin Stiffness
Snominal 

soft

lateral bending 0.00 +41.9i 0.00 +29.4i

vertical bending 0.00 +46.4i 0.00 +32.8i

coupled bending- 0.00 +96.3i 0.00 +68.0iS~torsion

coupled bending- 0.00+104.2i 0.00 +73.2i
torsion

coupled bending- 0.00+148.7i 0.C0+105.li
torsion

-vertical bending 0.00+227.7i 0.00+161.Oi

Modal Behavior of Fuselage-Tailboom-Fin Structure with Basic
Tail Rotor System Plus Drive Shaft Flexibility

The effect of the attachment of the basic tail rotor configu-
ration with drive shaft torsional flexibility to the nominal
and soft fuselage configurations on the coupled modes cZ the
complete system was investigated for the two rotor speeds used
previously. With the coupling of the blade modes to those of
the fuselage, coupled modes of the system are obtained that
are related to the various types of blade modes that exist.
Thus, there are sets of coupled rotor-fuselage modes that areI' related to the umbrella, forward cyclic, and backward cyclic
types of blade motion. The reactionless type of blade modes
do not alter the fuselage-tailboom-fin modes, since no forces
or moments are transmitted to the fuselage by the blades.
The eigenvalues obtained for the fuselage-tailboom-fin struc-
ture modes for the various types of blade motion are presented
in Table 8 for the nominal rotor speed, nominal fuselage-
tailboom-fin structure stiffness configuration, and 75% nomi-
nal thrust for an advance ratio of 0.0. Results for the lower
rotor speed were essentially the same as for the nominal rotor
speed, which means that the rotor speed has little, if any,
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TABLE 8
EFFECT OF THE ADDITION OF THE BASIC TAIL ROTOR

WITH DRIVE SHAFT TORSIONAL FLEXIBILITY
ON THE FUSELAGE-TAILBOOM-FIN MODES

Type of Blade Motion
Reactionless Umbrella Forward Backward

Cyclic Cyclic

0.00 +41.9i -0.84 +42.8i 0.00 +45.Oi 0.00 +45.0i

0.00 +46.4i -0.00 +49.7i 0.00 +49.8i 0.00 +49.8i

0.00 +96.3i -0.12+105.3i 0.00+J05.9i 0.00+105.9i

0.00+104.2i -0.04+109.8i 0.00+!10.Oi 0.00+ll0.Oi

0.00+148.7i -0.37+168.6i 0.00+169.6i 0.00+169.6i

0.00+227.7i -0.03+232.2i 0.00+232.2i 0.00+232.2i

effect on the fuselage-tailboom-fin structure modes. The
results obtained for the softer fuselage-tailboom-fin struc-
ture are very similar to those obtained for the nominal
stiffness configuration.

On the basis of the results presented in Table 8, it can be
seen that the fuselage-tailboom-fin modes coupled with the
umbrella, forward cyc.lic, and backward cyclic modes of theblade have a higher frequency than the corresponding modes

with reactionless blade behavior and are either neutrally p
/ I stable or slightly damped. The fuselage modes corresponding

to backward and forward cyclic blade motion were found to be i
identical. Although these cyclic blade modes have frequencies
very close to those of the umbrella blade modes, the degree of
coupling between blade motion and fuselage-tailboom-fin motionI
is much less than that observed for the umbrella blade modes.
Due to the significant differences in frequency and fuselage-
tailboom-fin mode shape observed between the fifth fuselage-

tailboom-fin mode coupled with reactionless blade behavior and
those listed as the fifth fuselage-tailboom-fin modes coupled
with umbrella, forward cyclic, and backward cyclic blade
behavior, it is believed that the latter modes correspond to I
an additional basic mode not obtained for reactionless blade

J behavior.
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Effect of Advance Ratio on the Modal ) _.,avior of the
Fuselage-Tailboom-Fin Structure when coupled with Total
Tail Rotor System

The modal behavior of the fuselage-tailboom-fin structure with
a tail rotor system attached which includes the effects of
flaxibilities allowed by finite gearbox support stiffness,
finite control collective stiffness, and drive shaft torsional
flexibility will also be dependent upon the type of blade
motion. Although the effects of rotor rotational speed and
fuselage stiffness were considered in the investigation of the
effects of advance ratio, only the results obtained for the
nominal rotor speed and fuselage configuration will be pre-
sented, as no significantly different effect was noted for
these different configurations. The eigenvalues obtained for
the fuselage-tailboom-fin structure modes for the various
types of blade motion are presented in Table 9 for the rotorspeed and fuselage stiffness configuration specifiede above.

TABLE 9
EFFECT OF ADVANCE RATIO ON THE

FUSELAGE-TAILBOOM-FIN MODES OF THE
COMPLETE HELICOPTER SYSTEM

Type of Assumed Blade Motion

p Reactionless Umbrella Forward Backward
Cyclic Cyclic

0.0 0.00 +41.9i -0.87 +42.2i 0.00 +44.9i 0.00 +44.9i0.3 0.83 +45.3i -2.62 +44.3i 0.00 +45.4i 0.00 +45.3i

0.0 0.00 +46.4i -0.50 +49.2i 0.00 +49.2i 0.00 +49.2i
0.3 -0.04 +49.2i 0.48 +48.2i 0.78 +48.7i 0.78 +48.7i

0.0 0.00 +96.3i -0.01 +96.7i 0.00 +96.8i 0.00 +94.4i
0.3 -0.13 +96.81 -0.05 +94.4i 0.00 +94.4i 0.27 +96.6i

0.0 0.00+i104.2i NO NO NO
"n.0 NO -0.23+120.3i 0.00+124.6i -0.35+121.2i
0.3 -0.11+124.6i 0.49+121.4i 0.88+12*.Oi -1.05+122.4i

0.0 0.00+148.7i NO NO NO
0.0 NO NO 0.36+168.3i 0.00+169.Oi
0.3 NO 0.01+169.Oi 0.40+168.2i 0.01+169.Oi

0.0 0.00+227.7i 0.00+234.4i 0.00+234.Oi 0.47+234.Oi
0.3 NO 0.48+231.8i 0.48+231.8i NO
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This table presents results at two advance ratios for each
type of fuselage-tailboom-fin mode except the fourth and fifth
modes at an advance ratio of 0.0, where an extra row has been
added. This has been done since it is believed, on the basis

additional basic fuselage-tailboom-fin modes exist in the area
of these two original basic fuselage modes presented in
Table 9. A comparison of the results oresented in Table 9
with those presented in Table 8 would yield the conclusion
that the advance ratio has very little effect on the modal
behavior of the coupled system. However, even though the
frequencies appear unaffected by advance ratio, the fuselage-
tailboom-fin mode shapes, except for those corresponding to
the first fuselage-tailboom-fin mode types, are drastically
altered by an increase in advance ratio. For example, the
umbrella blade motion fuselaqe-tailboom-fir. mode (-0.50+49.2i)
at an advance ratio of 0.0 is very predominantly vertical
fuselage-tailboom-fin motion, whereas the mode (0.48+48.2i) at
an advance ratio of 0.3 is very predominately lateral
fuselage-tailboom-fin motion. Thus, although the effect of
advance ratio on the umbrella, reactionless, forward cyclic,
and backward cyclic blade modes was noted to be insignificant,
the effect of advance ratio on the tail rotor system behavior
when coupled to a fuselage-tailboom-fin structure causes sig-
nificant alteration in the coupling characteristics. This
alteration in coupling characteristics significantly modifies
the motions of the fuselage-tailboom-fin structure without
significantly modifying the related frequencies.

Another significant effect of advance ratio on the coupled
system modes is the apparent destabilization that occurs.
While the fuselage damping effect is undoubtedly always posi-
tive, the aerodynamic damping forces generated by the tail
rotor system tend to dominate since the effective disc area of
the tail rotor is significantly larger than the effective area
of the fin and fuselage. Thus, if the tail rotor tended to be
unstable, the entire fuselage-tail rotor system would probably
be unstable. While this result might be surprising, it is not
without precedence for rotor systems mounted to flexible
structures. Therefore, the effect of advance ratio on the
coupled air resonance modes ccnsists of two primary effects:
(1) a significant change in the components of the modal func-
tions, and (2) a reduction in the stability of the modes.

Effect of Advance Ratio on the Blade Modal Behavior of TotalTail Rotor System Attached to Fuselage Structuce

For the blade modes, there is a significant effect of rotor
speed on the first flapwise and first torsion air resonance
modes. Since the results obtained for both rotor speeds had
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basically the same trend with advance ratio, only the results
for the nominal rotor speed will be presented. The results
obtained for tne umbrella and cyclic blade modes of the full
system are presented in Table 10 for advance ratios of 0.1 and
0.3.

TABLE 10
BLADE MODE EIGENVPLUES OF

COMPLETE TAIL ROTOR SYSTEM-FUSELAGE STRUCTURE
AT TWO ADVANCE PATIOS

Predominate Advance Ratio
Mode Type 0.1 0.3

Umbrella

first flapwise -14.76+183.5i -12.87+180.6i

first chordwise -0.34 +18.6i 0.14 +18.2i

first torsion -36.24+317.7i -32.85+320.0i

Backward Cyclic

first flapwise -3.90+186.6i -3.53+187.5i

first chordwise NO -18.22+226.8i

first torsion -25.00+326.9i -22.70+318.6i

Forwara Cyclic

first flapwise -3.30+186.6i -3.31+186.6i

first torsion -24.40+331.Oi -21.70+330.7i

When the results given in Table 10 are compared with theresults of Table 6, several conclusions are apparent regarding

the effects of advance ratio and tia inclusion of the flexible
fuselage-tailboom-fin structure. As would be expected, the
effect of the flexible fuselage-tailboom-fin structure on the
blade air resonance modes is much more pronounced than the
effect of the blade flexibilities on the modes of the flexible
fuselage. In particular, the re-alts obtained for the first
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flapwise umbrella and cyclic modes and the first chordwise
cyclic mode showed significant effects of the inclusion of the
fuselage flexibility on the frequencies and stabilities of
these modes. In addition, fuselage flexibility significantly
increased the frequency of the first flapwise umbrella mode
and first chordwise cyclic modes and decreased the frequencies
of the first flapwise cyclic modes. The fuselage flexibility
slightly reduced the damping associated with the first flap-
wise umbrella mode, reduced very significantly the damping

L associated with the flapwise cyclic air resonance modes, and
significantly increased the stability of the first chordwise
backward cyclic modes. The trends observable with respect to
advance ratio are essentially similar to those presented in
Table 6, with the exception that the fuselage-tailboom-fin
structure at an advance ratio of 0.3 provides an additional
stabilizing effect on the first chordwise umbrella mode and an
additional destabilizing effect on the first flapwise forward
cyclic mode.

OVERALL CAPABILITIES OF PRESENT PROGRAM

The results obtained for the complete fuselage-tail rotor
system, with all allowed flexibilities included, have sub-
stantiated the significance of the effect of the tail rotor
system on the basic fuselage-related modes and the effect of
the fuselage-tailboom-fin structure on the blade-related air
resonance modes. These have not been shown by previously
existing analyses.

The computer program used for the parametric sensitivity
analyses is capable of predicting the air resonance behavior
of complex tail rotor/fuselage systems. Although the pre-
dicted results obtained suggest modal behavior that may be
expected, the validity of these results - other than on a
theoretical basis - cannot be established until the program
is utilized to obtain predicted results for direct comparison

:/ with experimental results for a specific helicopter system.

The only basic limitations of the computer program result from
restrictions utilized during its construction and requirements
related to the computer system employed. The only limitation
in the nature of coding of the program was the assumption of
identical blades on the tail rotor, which was reasonable for
the intent of general application of the computer program.
This restriction can be easily removed from the present pro-
gram by modifying the program to the form necessary for the
consideration of nonidentical blades. An additional restric-
tion of the computer program resulted from the dimensioning of
large storage arrays such that only the blade phasing assump-
tion for which the rotor blades must be equally spaced
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azimuthally can be employed for more than one blade. This
restriction is removable by increasing the dimensions of the
involved arrays. This, of course, will increase significantly
the core requirements, which are presently 250K octal with an
overlay structure. The computer program, as developed, is
compatible with existing IBM 360 computer systems. With minor
format changes, it would also be compatible with the CDC 6600
computer system.

The computer program developed can be used in its present form
to aid in the development of new, and the modification of
existing helicopter tail rotor/fuselage systems with improved
dynamic characteristics. This program is capable of extension
to the representation for main rotor/fuselage or main rotor-
tail rotor/fuselage modal behavior or dynamic forced response
characteristics. It is also modifiable to an analysis which
can investigate rotor systems with unequally spaced blades or
systems consisting of blades of different properties.

L!
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CONCLUS IONS

It is concluded that:

1. The computer program in its present form can be
easily installed on an IBM computer system and
executed, as was demonstrated by Ft. Eustis
Computer Facility personnel not familiar with the
program.

2. The use of the eigenvalue scanning technique provides
an efficient means of obtaining solution eigenvalues
wi*thin a range of stability and frequency parameters
if there is no prior knowledge regarding the location
of possible eigenvalues.

3. The effect of system parameters on either the
umbrella, the reactionless, the forward cyclic, or
the backward cyclic blade/fuselage air resonance
modes can be efficiently determined with the use of
blade phasing relationships.

4. The results obtained through the use of the computer
program (i.e., the system air resonance frequencies,
damping, and mode shapes) have provided a much better
understanding of the dynamic modal coupling of
complex flexstrap tail rotor systems.

5. The effect of drive shaft torsional flexibility
results in a significant alteration of the chordwise
umbrella blade modes.

6. Due to the complex coupling of flapwise and torsional
motions of a flexstrap retention system, the effect
of control system collective flexibility of a flex-
strap tail rotor configuration results in a signifi-
cant drop in the first flapwise umbrella frequency,
but only a slight alteration of the first torsion
Sfrequency of this type of rotor.

7. The effect of tail rotor gearbox support stiffness
I' can significantly alter the forward and backwardH cyclic modes of the tail rotor system.

8. The effect of advance ratio on the umbrella,
L •reactionless, forward cyclic, and backward cyclic

blade modes of a flexstrap tail rotor system was
found to be limited for the tail rotor thrust
values considered.
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9. The effect of advance ratio on the coupled tail
rotor/fuselage-tailboom-fin structure air resonance
modes related to the fuselage appears to cause a
significant change in the relative importance of the
various components of the modal shapes (in some
cases, it causes a reduction in the modal stability).

10. The primary effect of advance ratio on the coupled
tail rotor/fuselage-tailboom-fin structure air
resonance modes related to the blades was to change
the stability characteristics.
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RECOMMENDATIONS

The following recommendations are made:

1. The computer program should oe extended to predict
the mean and dynamic forced response characteris-
tics of tail rotors in steady state forward flight.

2. The accuracy of the stability and forced response
versions of the computer program should be
verified by comparing predicted results with well-
documented experimental data.

3. The stability and forced response versions of the
computer program should be utilized to determine
means of improving significantly the dynamic
characteristics associated with a tail rotor of
an existing inventory aircraft.

4. The stability and forced response versions of the
computer program should be extended to include the
dynamic characteristics of the main rotor, its
control system, and the supporting gearbox trans-
mission system so that the interactive dynamic
characteristics of the main rotor-fuselage-tail
rotor can be adequately investigated.
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APPENDIX A
SIMPLIFIED EXAM1PLE OF CONSTRUCTION
OF FINAL GOVERNING MATRIX EQUATION

The application of Laplace transforms and truncation procedures
to a simple problem is presented to provide some insight into
the method of development of the final governing matrix equa-

tion.

To provide a background for the simple example, the general
nature of real-time equations involved in the analysis for
representing the behavior of a coupled tail rotor system will
be briefly presented. The real-time equations for the state
variables at the inboard end of a mass, aerodynamic, or
torsional spring section characteristic, in terms of the state
variables at the outboard end, may involve time-derivative
operators. For example, the consideration of a lumped mass and
inertia results in real-time equations for che forces and
moments involving d 2 /dt 2 operators (acceleration terms) and
.4d/dt operators (velocity terms) applied to slope and dis-
placement variables. The consideration of an aerodynamic
characteristic results in real-time equations for forces and

moments involving d/dt operators and einQt terms where n can
be a positive or negative integer. Thus, application of the
real-time equations consecutively from the blade tip inboard
results in increasingly hiqher order time differential equa-
tions for the state variables at each further inboard section.
Similarly, t-ie same type time differential behavior occurs for
"tie fuselage-tailboom-fin structure. Thus, applying boundary
conditions at the hub-tail rotor shaft interface, the result-
ing boundary condition equations are high order differential

in'. teequations including terms involving e . Discontinuity
equations, since they involve blade variables at specific
points on the blade, are also high order differential equations

with e terms. 'ii- swashplate governing equation, without
ba, bas'plate motion, is a time differential equation involving
d 2 /dt 2 and d/dt operators and e terms.

T."ihus, the governing equations for a coupled tail rotor sy.3tem
can be renresunted as a set of high order time differential.
equations which must be solved. Although the actual analysis
developed for the representation of coupled helicopter/tail
rotor systems makes use of the application of Laplace trans-
forms prior to the obcaining of final governing equations, the
resultant Laplace transformed equations of the developed
analysis represent equations which are a function of time

differential opeiators and ein't type ter'.ms. The manner in
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which the time differential equations can be put in a final
matrix form can be shown by considering a simple example where
the equations of motion can be defined by the two second order
time differential equations,

2 2b d f (t)/dt + b 2 f 2 (t)sinQt = 0

b d f (t)/dt 2 + b 4 f 2 (t) + b 5 fl(t)sin~t 0

Where b. are constants and fl(t) and f 2 (t) are two functions
of time. These equations can also be expressed in the for-r

22i•?t -iat
b1d 2f 1 (t)/dt - ib 2 f 2 (t)e /2 + ib 2 f 2 (t)e /2 = 0

i•t
b 3cdf 2 (t)/dt2 + b 4 f2 (t) - ib 5 f 1 (t)e /2

+ibsfl(t)e /2 =0

where the expression sintt = -ie /2 + ie /2
has been substituted.

Application of the Laplace transforms, assuming quiescent
initial conditions, to these two equations provides the
Laplace transformed equations

blS2 ls) -ibL22(s-ifc)/2 4 ib2 F (s+i,()/2 = 0

(b 3 s 24bA)f 2 (s) - ib5".l (s-iP)/2 + i5]2 (s+i-,/)2 0

in which it can be noted that the nonshifted Laplace trans-
formed variables are dependent on the shifted Laplace trans-
formed variables. Relationships for the shifted LapJ]-ce
transformed variables are obtained by frequecy shiftil.ci the
Laplace transform variables in the last two expressions
by -iki such that

2 2 2- i (-f1b (S -2ik.s-k • )fl(S-ika) - if 2 (s-ik-i•)/

+ ib 2 (.-i .+i,),'2
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[b3 (s -2Jk-k2"Q2 + b f 2 (s-ikQ) - ib 5 ? (s-ik2-iQ,)/2

+ ib 5 1 (s-ikQ+iQ)/2 = 0

Substitution of k = -1, 0D anti +1 co "respoiiding to inclusion
of coupling effects one oer rev above anr below the main
frequency equatior fox which k = 0 provides a set of six
equations which can be wr'itton with truncation of terms
applied for k = -1 and 4-1 in the mat:ix form

A_ 0 0 BI 0 0

1-1,- -,00 D0-l, 1,0 0 0 002 ( s "
. B0,-! A0,0 0 0 B 0,1 Tl(s)

C0 C, D0  C 0 1  0-l•0,_l 0 0,0 0o,1 T 0 g(s) =0

0 0 0 , 0 0 (s-i Q)[' K 0, :,
S0 0 C 1, 0 0 o ,1 T2 (s-i P)

where the subscripts represent integer values for k and n and

Ak,n b (s 2-2ikgs-k-22) 6 n-k
SBk.,n 1nk ib-l1

B - (6n-k + 6n k

C k,n = (n-k)ib5(6n-k + 6n-k)_

!" ~~[ i;Dkn E3s-2ikP~s-k2 )+b 60

kn 34n-k

This matrix equation is identical in concept to that of
Equation (38) and can be represented in the same manner with

k,n Bk,n i
[Tk, n] k D

Additional harmonic coupling can be represented by expanding
the number of values of k used in constructing the final ma-
trix governing equation to a higher number which is equiva-
lent to increasing the value of Nf.
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LIST OF SYMBOLS*

a general variable used in defining other1 variables

ij final governing matrix

5

[A!7j modified final governing matrix obtained
by removal of row and column from final
governing matrix

k frequency shifted Laplace transform
version of the transfer matrix represent-
ing the lumped mass and inertia of the
ith section of the mth blade

A variable defined for use in
Ak'n simplified example of analysis

a. effective length of pitch horn, positive
am if control rod is attached aft of blade

shear center, ft

a highest harmonic coefficient obtainable
max by basing Fourier analysis or values of

the function of interest at uniformly
spaced azimuthal steps for one rotor
revolution

Antan general Fourier harmonic coefficients
nI n

SV, b. coefficients of the two equations used for
,1 simplified example of analysis

b. offset of the jth linear spring attachment
point from neutral axis of swashplate
ring, positive inward, ft

*All units given in English units but equivalent SI units may
be used if applied to all definitions of program variables.
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general k frequency shifted discontinuity
column matrix for inclusion of effects of
the first discontinuity term on the blade
state variables

Bk variable defined for use in sim-
"k•n plified example of analysis

A
associated transfer matrix specifying[Nk']' contribution of n frequency shifted blade
tip variables to the k frequency shifted
blade state variables at the inboard end
of the jth lumped parameter characteristic

i4

'~k1 nassociated transfer matrix specifying con-
LB~n~m tribution of n frequency shifted blade

frequency shifted state variables of the

mth blade at the inboard end of the ith
blade section

f Fkf,nl column matrix specifying contribution of
the n frequency shifted first discontinuity
term to the k frequency shifted blade
state variables at the inboard end of the
jth lumped parameter characteristic

{bkn)'i column matrix specifying contribution of
the n frequency shifted first discontinuity
term to the k frequency shifted mth blade
state variables at the inboard end of the
ith blade section 13

B 0] mmatrix used in specifying contribution of
"the (m-l)th blade tip and discontinuity
unknowns to the mth blade related slope
and deflection boundary cond4.tion equa-
tions

1' matrix used ii -pecifying contribution of•L km the mth blade .p and discontinuity un- li:

knowns to the. .t blade related slope and
deflection bot tary condition equations
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rB2]m~ matrix used in specifying contribution of
the (m+l)th blade tip and discontinuity
unknowns to the mth blade related slope
and deflection boundary condition equa-
tions

IB.k7 matrix specifying contribution of the jth
L'nJ blade n frequency shifted tip and discon-

tinuity unknowns to the mth blade related
k frequency shifted slope and deflection
boundary condition equations and discon-
tinuity equations

nblade n frequency shifted tip unknowns to

its related k frequency shifted slope and
deflection boundary condition equations

Rkc Imatrix 3pecifying contribution of the mth
L k,n~m blade n frequency shifted tip unknowns to

its related k frequency shifted discon-
tinuity equations

BD matrix specifying contribution of the mthk,nIm blade ni frequency shifted discontinuity

unknown.'-- to its related k frequency
shifted discontinuity equations

lBBJ k | matrix specifying contribution of the jth
blade n frequency shifted tip unkrnc.wns to t
the ruth blade related k fiequency shifted
slope and deflection boundary condition
equations

Smatrix specifying contribution of the jth, m blade n frequency shifted discontin~uity

unknowns to the mth blade related k fre-
quency shifted slope and deflection
boundarl condition equation-'

[TF k B n1 matrix specifying contribution of the mth
L knmblade n frequency shifted discontinuity

unknowns to its related k frequency
shifted slope and deflection boundary ;
condition equation
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A

[] transfer matrix representing a lumped geo-
metric bend in shear center axis of the
ith section of the mth blade

[OF knmatrix specifying contribution of the n
k, i- frequency shifted fuselage nose unknownsS~to the mth blade related k frequency

shifted slope and deflection boundary con-
dition equations and discontinuity equa-~tions

'matrix specifying contribution of the k
Smfrequency shifted swashplate displacement
unknowns to the mth blade related k fre-
quency shifted slope and deflection
boundary condition equations an.d discon-
tinuity equations

C damping coefficient of control system
collective base plate spring-damper
support, lb-sec/ft

matrix specifying contribution of aerody-
IE 01namic damping to the aerodynamic transfer

matrix of the ith fuselage section

C. influence ecefficients of the restrainti•m transfer matrix of the mth blade

C. damping coefficient of the jth control
system spring-damper unit, lb-sec/ft

{Ck} general k frequency shifted discontinu-
ity column matrix for inclusion of the
effects of the second discontinuity term
on blade state variables

Ek,n variable defined for use in
simplified example of analysis

column matrix specifying contribution of
Sn, frequency shifted second discontinuity

term to k frequency shifted blade state
variables at the inboard end of the jth
lumped parameter characteristic
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~ Icolumn matrix specifying contribution ofK,nim the n frequency shifted second discontin-
uity term to the k frequency shifted mth
blade state variables at the inboard end
of the ith section

k •i matrix specifying contribution of aerody-.-km namic damping to the aerodynamic transfer
matrix relating k frequency shifted
blade state variables inboard of the
aerodynamic application poin:t or t .u ith
section of the mth blade to the n fre-
quency shifted state variables outboard
of the same point

(•k~nm,(CvYkn nm, row vectors specifying contribution of
ZW,) Vknm hlade tip unknowns to the forces acting

on the mth blade control rod at the pitch
,n)m horn attachment point in the same orien-

tation as the rotatina shaft coordinate
system x, y, and z axes of the mth blade,
respectively

torsional damping coefficient of the jth3 torsional spring-damper unit counter-

acting local lateral rotation of control
system ring, ft-lb-sec/rad

C-u -:a-ping coefficient o' rath control ro•
c,m For flexstrap rotor, sec

torsional damping coefficient of the jth
torsional spring-damper unit counteract-
ing local longitudinal rotation of une
control system ring, ft-lb-sec/rad

s k frequency shifted aerodynamic transfer
matrix of the ith section of fuselage
structure

Fn nl blade aerodynamic transfer matrix relat-
[C-k, n]m
L ning k frequency shifted blade state

variables inboard of the aerodynamic ap-
plication point of the ith section of the
mth blade to the n frequency shifted state
variables outboard of the same point
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matrix specifyinq nondamping contribution
to the aerodynamic transfer matrix of the
ith fuselage section

[DIl matrix utilized in defining contribution
m of fuselage hub variables to the mth blade

related slope and deflection boundary con-
ditions

general k frequency shifted discontinuity
column matrix for inclusion of the effects
of the third discontinuity term on blade
state variables

D- variable defined for use in sim-plified example of analysis

fak,nJ column matrix specifying contribution of
n frequency shifted third discontinuity
term to k frequency shifted blade state
variables at the inboard end of the jth
lumped parameter characteristic

{dknlm column matrix specifying contribution of
the n frequency shifted third discontin-
uity term to the k frequency shifted mth
blade state variables at the inboard end
of the ith section

dm rigid offset of the mth control rod attach-
ment point from the neutral axis of the
ring, positive outward, ft

[n-k m matrix specifying nondamping contribution
to the aerodynamic transfer matrix relat--
ing k frequency shifted blade state vari-
ables inboard of the aerodynamics of
application point ot the ith section of
the mi-h blade to the n frequency shifted
state variables outboard of the same point

ci(e,t), d(y.j,t) definitions involving control system dis-
placements to reduce length of equations
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IjDBIM row matrix specifying a contribution of
mth blade k frequency shifted state var-
ables at restraint to the third restraint
discontinuity equation of the mth blade

Xk•nimlIDYk,nm, row matrices specifying contribution of n

S Inm frequency shifted mth blade related tip

unknowns to the first, second, and third
-Zk restraint discontinuity equations, respec-
Lk,n m tively,of the mth blade

DXl ,DX2 DX3  terms specifying contribution of the first,
lm' mm second, and third k frequency shifted mth

blade related restraint discontinuities,
respectively, to the first restraint dis-
continuity equation of the mth blade

DYlmDY2 ,DY3 terms specifying contribution of the first,
second, and third k frequency shifted mth

blade related restraint discontinuities,
respectively, to the second restraint dis-
continuity equation of the mth blade

DZIk m,DZ2 2, terms specifying contribution of the
,m'' first, second, and third k fiequency

DZ3~ shifted mth blade related restraint dis-
D , continuities, respectively, to the third

restraint discontinuity equation of the
mth blade

ix

e general exponential variable

-lim transfer matrix representing the elastic

Lmcharacteristics of th-e ith section of the
mth blade

"eI wariable defined for convenience in boumnd-
arv -orviition equation rerreentation

L:• I bending stiffness of control system ring,
Silb-ft2

full and modified forcing function column
I jK vectors, respectively, used to determine

corr,<.tI on vectors
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Laplace transformed functions involved in
simplified example of analysis

f (t),f (t) time dependent functions used in simpli-
fied example of analysis

fm(t) function of t~ime for the mth blade defined
Xby exponential Fourier analysis represen-

tation

f (t) form used to represent the nth function
of time

F(a) variable defined to reduce len~gth cf con-
trol syst~em equations

F(S) Laplace transform of f(t)

- -.

F(s-a) shifted Laplace trarmsform of f(t)

f(t) general function of time

f(t) general state variable associated with
ith section

fn(t) o eptgeneral function of

Smatrix specifying contribution of the mth
F a)varblade n frequency shifted tip and dis-

continuity unknowns to the fuselage re-
lated k frequency shifted moment and shear
boundary condition equations

[FBks) matrix specifying contribution of the mth
blade n frequency shifted tip unknowns toV ~the fuselage related k frequency shifted Imtoment and shear boundary condition
equations

{• ~'column matrices specifying contributionk nIM of the mth blade n frequency shifted
first, second, and third discontinuities,

Scontinrespectively, to the fuselage related kV ltfrequency shifted moment and shear bound
fBd ary condition equations

•. ~ ~ ~~~~k, mnld rqec hitdtpuko~st
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[ U matrix specifying contribution of the k
frequency shifted fuselage unknowns to
the fuselage related k frequency shifted
boundary condition equations

FX2forces acting in the control rod local
k k,m' coordinate system x, y and z axes, re--

FZ.2 km spectively

LGJ general real-time transfer matrix

Lgeneral k frequency shifted Laplace trans-
L• formed transfer matrix

S(s general Laplace transformed transfer
matrix

GJ torsional stiffness of control system
ring, lb-ft 2

i k]S k frequency shifted aerodynamic transfer
matrix of the ith section of fuselaae
structure

r ; Laplace transformed transfer matrix speci-
fying the contribution of the n frequency
shifted state variables outboard of an
aerodynamic load poi.nt at j to the k fre-
quency shifted state. variable just inboaro
of the load point

F[lLaplace'transformed transfer matrix speci-
fying the contribution of the n frequency
shifted state variables to the zero fre-
quency shifted state variables due to

"I • aerodynamic considerations at an aerody-
namic load point

imaginary number, •-

"i,j,k general orthogonal unit vectors of a
coordinate system
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bm,3bm,kmk orthogonal unit vectors of the mth bladeSbm (rotating) coordinate systems which vary

from section to section

lfjfkf orthogonal unit vectors of fixed shaft
coordinate system

Sjfc,kfc orthogonal unit vectors of fixed controlifc,' fsystem coordinate system

IfsJ k orthogonal unit vectors of the fixed fuse-f fus-f
lage coordinate system

irj k orthogonal unit vectors of the rotatingcontrol system coordinate systems, one

corresponding to each blade

ir m k orthoaonal unit vectors of rotating shaftcoordinate system of mth bldde

I k orthogonal unit vectors of the local fuse-
lage coordinate systems which vary from
section to section

IBC integer controlling type of rotor system

K stiffness of collective spring--amper unit
supporting control system base plate,
lb/ft

K linear stiffness of the control rod of thecmmth blade of a flexstrap rotor system,

lb/ft

kd drive shaft torsional flexibility, ft-lb/
rad

k linear stiffness of the jth spring-damper
support unit, lb/ft

km linear stiffness of the control rod of
the mth blade, lb/ft

SKIc variable defined to reduce length of con-b'c trol system equations
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K- variable defined to reduce length of con-

trol system equations

K variable defined to reduce length of con-
trol system equations

Svariable defined to reduce length of con-b trol system equations

FKC variable defined to reduce length of con-
a trol system equations

__KC-•avariable defined to reduce length of con-
trol system equations

KCa variable defined to reduce length of con-
trol system equations

kO. torsional stiffness of the jth torsional
spring-damper unit counteracting local
lateral rotation, ft-lb/rad

kýj torsional stiffness of the jth torsional
spring-damper unit countr-ractina local
longitudinal rotation, ft-lb/rad

. transfer matrix re-resenting the elastic
Lmrn restraint at section i of the mth blade,

only allowed once on the blade

L12 distance from center of rotor hub to the
mth control rod attachment point to the
control system ring, ft

M mass of control system ring, slugs

W~im matrix utilized in defining contribution
of blade hub variables to the fuselage
related moment and shear boundary condi-
tions

blade root moment vector for the mth blade
defined :elative tc the rotating coordi-
nate system of the nth blade, ft-lb
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MS fuselage structure hub moment vector de-fined relative to the fixed shaft coordi-

nate system, ft-lb

max maximum number of harmonics obtainable by
Fourier analysis based on values of the
function of interest at uniformly spaced
azimuthal steps for one rotor revolution

Mct integer control parameter for inclusion
of control torque discontinuity

Mer integer control parameter specifying de-
gree of convergence required by user

Mfea integer control parameter for inclusion
of feathering bearing discontinuity

Mflap integer control parameter for inclusion
of flap hinge discontinuity

Mr integer control parameter for inclusion
of flexstrap restraint discontinuities

My,Mz,T flapwise bending, chordwise bending, and
pitching moments, respectively, ft-lb

My,Mz,T Laplace transformed flapwise bending,
chordwise bending and pitching moments,
respectiv=iy, ft-lb

(MYk)m, (Mzk)m k frequency shifted Laplace transformedkimflapwise bending, chordwise bending, and

pitching moments, respectively, at the
(;Fk m inboard end of the ith section of mth

blade, ft-lb

i i
(MZm k frequency shifted Laplace transformed

i Mflapwise bending, chordwise bending, and
) pitching moments, respectively, at the

(TMn) k inboard end of the ith section of mth

blade, ft-lb

MYm, MZm, Tm blade root flapwise bending, chordwise
bending, and pitching moments, respec-
tively, of the mth blade in its rotating
shaft coordinate Fystem, ft-lb

144 [



(MYm)k, (MZm)k, k frequency shifted Laplace transformed
blade root flapwise bending, chcrdwise

(•)k bending, and pitching moments, respec-tively, of the mth blade in its rotating

shaft coordinate system, ft-lb

Mys, Mzs,Ts fuselage flapwise bending, chordwise bend-
ing, and pitching moments, respectively,
in the local fuselage coordinate system
at tail rotor hub, ft-lb

My,Mz,Ts Laplace transformed fuselage flapwisebending, chordwise bending, and pitching

moments, respectively, in the fixed fuse-
lage coordinate system tat the nose of
helicopter, ft-lb

(MYs )k,(Zs)k, k frequency shifted Laplace transformed
fuselage flapwise bending, chordwise( (S)k bending, and pitching moments, respec-

. tively, in the local fuselaqe coordinate

system at tail rotor hub, ft-lb

Mz(8,t) local bending moment acting on the control
system ring, ft-lb

N,Vy,Vz radial, chordwise shear, and flapwise
shear forces, respectively, lb

iTN,Vy,Vz Laplace transformed radial, chordwise
shear, and flapwise shear forces, respec-
tively, lb

(Nm)k,(Vym)k, k frequency shifted Laplace transformedblade root radial, chordwise shear, and
(Vz flapwise shear forces, respectively, of

in Icthe mth blade in its rotating shaft coor-

dinate system, lbj , * *

S N,Vy ,Vz Laplace transformed fuselage axial, chord-4 ~ ~ wise shear, and flapwise shear forces,
respectively, in the fixed fuselage coor-
dinate system at the nose of helicopter,
lb

145



k frequency shifted Laplace transformed
fuselage axial, chordwise shear, and flap-j

(Vz) wise shear forces, respectively, in the
s k local fuselage coordinate system at tail

rotor hub, lb

(N2 I(y-2~m, k frequency shifted Laplace transformed
forces acting on the control rod of the

kmz mth blade at its attachment to the pitch
horn in the x, y, and z direction,
respectively, of the mth blade rotating
shaft coordinate system, lb

PNAS number of uniformly spaced azimuthal steps
in one revolution used to determine har-
monic coefficients of aerodynamic functions

Nb number of rotor blades

Nct blade section immediately inboard of which
the control torque is applied

Nf maximum number of harmonics included for
interharmonic coupling

Nfea blade section immediately inboard of which
the feathering bearing occurs

Nflap blade section immediately inboard of which
the flap hinge occurs

Nwax highest azimuthal h-armonic of controlIs system ring displacement to be included

Nps integer denoting type of relative blade
motion assumed with blade phasing

Nr blade section at waich the flexstrap

W restraint representation is to be con-
s idered

Ns number of elastic spring-damper units
supporting control system ring

INS number of blade sections

NSF number of fuselage-tailboom-fin sections

NS in't-eacr riontrol parameter specifying ina-
clusion of Control system representation
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(Pk) m k frequency shifted force acting on the
control system ring due to the mth control
rod, lb

Pm(t) ,Pm(s) real-time and Laplace transformed force,
respectively, acting on the control system

ring in the negative zfc axis direction

due to the mth control rod, lb

column matrix containing the n frequencyj njm shifted tip variable and discontinuity
unknowns of the mth blade

PFC pitch-flap coupling factor

PLC pitch-lag coupling factor

Q9(t) £th Fourier harmonic of the Q(e,t) loading
function, Jb/ft

{qn}* n frequency shifted unknown column matrix
containing control system dispiacement,
fuselage related, and blade related
unknowns

.Q(O,t) applied force per unit length acting on
the control system ring in the negative
Zf axis direction, lb/ft
~fc

R radius of control systen i, ft

FR]transfer matrix representing rigid offsec
of the mth blade

Ir. twelve-element row matrix with the ith
element equal unity and all others equal
zero

Sncolumn matrix containing n frequency
.in 2  shifted control system unknowns

(i) p/rev amplitude of a state variable at

the inboard end of the ith section
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[rPFCc twelve-element row matrix with fourth ele-
ment equal PFC and eleventh element equal
unity with all others zero

rPL twelve-element row matrix with fourth(pLC element equal unity and seventh element
equal PLC with all others zero

s Laplace transform variable
Sa variable defined to reduce length of con-

trol system equations

eigenvalue for iteiation just completedduring program iteration procedure

k frequency shifted Laplace transformed

blade state va..i able vector at the in-
board end of ith section

k'k ,k frequency shifted Laplace transformed
blade state variable vector at the in-

board and o'itboard ends, respectively, of
the jth lumped parameter char- teristic

jSk~i k frequency shifted Laplace transformed
fuselage structure state variable vector
after ith section has been crossed

ik k frequency shifted associated fuselage
structure transfer matrix relating fuse-
lage structure state variables after ith
section has been crossed to the fuselage
structure unknowns

k frequency shifted fuselage structure
variable unknowns at nose of helicopter

s eigenvalue of iteration prior to the
iteration just completed during program
iteration procedure

Sm,Z variable defined to reduce length of

control system equations
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r. frequency shifted Lap~ace transformed
blade tip state variable slope and d.flec-
tion unknowns

SNE next trial eigenvalue based on previons
two eigenvalucs

.~s(t)KS(t) cgeneral state variable vector inboard
and outboard of a blade section, respec-
tively

s(s) 4s(s) Laplace transformed geneya_ state varia-
I ble vector inboard and outboard of a

blade section, respectively

B.-k nj matrix specifying contribution of n fre-
quency shifted blade tip and discontinu-
ity unknowns to the k frequency shifted
control system related equations

LF k_, matrix specifying contribution of n fre-

quency shifted fuselage structure nose
unknowns to the k frequency shifted con-
trzl sysLcm related equations

S-Kk]i k frequency shifted Laplace transformed
L version of transfer matrix representing

the torsional spring-damper characteris-
tics of the ith section of the mth blade

FSWk matrix specifying contribution of n fre-
U'•Jquency shifted control system unknowns

to the k frequency shifted control system
equations

t time, sec

! kA :matrix specifying contribution of all n
frequency shifted unknowns to all k fre-
quency shifted governing equations

"T(e,t) local torque acting on the control -ystem
ring, ft-lb
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Uo(t),uo(s) real-time and Laplace transformed version
of the displacement of the collective
base plate of control system relative to
ground, respectively, ft

u blade root deflection vector for the

m mth blade defined relative to the rotat-

ing coordinate system of the mth blade

_q
U influence coefficient matrix denoting

contribution of n frequency shifted hub
motion to q related control system equa-
tions

u fuselage structure hub deflection vec-
tor defined relative to the fixed shaft
coordinate system, ft

uxuyuz real-time axial.,chordwise, and flapwise
deflections of a section, respectively,
ft

ux,uy,uz Laplace transformed axial, chordwise, and
flapwise deflections of a section,
respectively, ft

ux ,uy ',uz Laplace transformed axial, choxdwise, and
flapwise blade tip deflections, respec-
tively, ft

S, UY ,uz blade root radial, chordwise, and "lap-
I R Iwise deflections, respectively, ot the

mth blade in its rotating shaft coordi-
nate system, ft

mk,(ý'Ym)k' k frequency shifted Laplace transformed
blade root radial, chordwise, and flap-

(rzmk wise deflections, respectively, of the
nith blade in its rotating shaft coordi-
nate system, ft

UX ,UY'ruzr discontinuity deflection variables for a
flexstrap blade at the control rod
attachment to pitch horn in the control
rod coordinate system x, y, and z axis
directions, respectively, ft
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x U~sUYsUZ s fuselage radial, chordwise, and flapwisedeflections, respectively, in the local

fuselage coordinate sLystem at tail rotor
hub, ft

(U-is)k, (Uys) k frequency shifted Laplace transformed

kfuselage radial, chordwise, and flapwise
S(us)k deflections, respectively, in the local

fuselage coordinate system at the tail
rotor hub, ft

S(U-k)m, (U-Yak)m k frequency shifted deflections of the
mth control rod attachment point to the

(uzak)m pitch horn, oriented in the x, y, and z
axis directions of the mth blade rotating
coordinate system, respectively, ft

(U-xPk)m,(UY_Pk)m k frequency shifted deflections of the
m mth control rod attachment point to the

(uzPk)m control system ring oriented in the x, y,
mand z axis directions of the mth blade

rotating coordinate system, respectively,
ft

v£(t) azimuthal harmonic of v(e,t)

V blade root force vector for the mth blade
defined relative to the rotating coordi-
nate system of the mth blade

V fuselage structure hub force vector de-
fined relative to the fixed shaft coordi-
nate system

v(Ot) displacement of the control system ring
in negative z direction as a function

of e and t, ft

v(x_,t) control system displacement in the nega-
tive zfc direction dependent on X. and t,

f-J

ft

Vy(Ot) local shear force actina on control sys-
tem ring, lb
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(t),(s) azirmuthal harmonic of w(ý,t) in real-time
and Laplace transformed form, respective-
ly, ft

w(•,t) displacement of the control system ring
relative to the rotating reference coor-
dinate system, ft

x,y,z general rectangular Cartesian coordinate
system axes

XbmYbmZhm blade local rotating rectangular Carte-
sian coordinate systerm axes

xe linear extension of Pith control rod, ft
xfryfIZf shaft fixed (nonrotating) rectangular

Cartesian coordinate system axes

Xfc'Yfc'Zf control system fixed rectangular Carte-
sian coordinate system axes

X fuselaqe .ixed rectangular Cartesian
coordinate system axes

{•j},-- final column matrix of all system un-

,X. knowns and an element of this matrix

-k,nXqn control system impedances associated with
asymmetry of support configuration

X, real part of the tth spatial harmonic of
control system ring displacement in the

rotating control Eystem coordinate system
at a frequency pQ zbove the main fre-
quencv, ft

x(i)
X p) real part of a general state variableP with frequency p/rev above the main fre-

quency at the inboard end of the ith
section, ft

XrcYrcZrc control system rotating rectangular Car-
tesian coordinate system axes
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X rYrm, Zrm shaft rotatina rectancuilar Cartesian
coordinate system axes associa-.eci with
the rith blade

X -Y'Zs local fuselage rectangular CartesianScoordinate system axes

V variabie introduced to r&.euc.e I.snath of
control system equations

S~(i)
Y in'aginary part of a g.eneral, state varia-

P ble with freor-ency p/rev above the main
frequency at the inboard end of the i-th
section, ft

Y. imaginarv I-art of the 9.th spatial har-
5 monic of control system. displacement in

rotating c'ontrol svstem coordinate sy te-,
at a frequency pý. above the main fre-
quency, ft

control system irpedar;ces associated with

symnetric properties of corntrol system
and its support configutation

Fboundary condition operational array for
obtaining blade root displacements and
slopes

a ipitch-lag coupling angle

a quantities representing sine and cosineterms involving control rod orientation

angles of the mth control rc;. when flex-
strap blades are used

"F Gi matrix operator specifying contribution
Sof the mth blade root state variables to
the mth blade related deflection and
slope boundary condition equation for a
gimballed rotor
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[aG mmatrix operator specifying contribution
of the (m+l)th blade root state variables
to the mth blade related deflection and
slope boundary condition equation for a
gimballed rotor

LaRi matrix operator specifying contribution
of the mth blade root state variables to
the mth blade related boundary condition
equations for an articulated, rigid, or
flexstrap rotor

FaT' matrix operator specifying contribution
of the second blade root state variables
to the first blade related boundary con-
dition equations for a teetering rotor

- Tilm-1 matrix operator specifying contribution
of the first blade root state variables
to the second blade related boundary con-
dition equations for a teetering rotor

[aTli matrix operator specifying contribution
m of the first blade root state variables

to the first blade related boundary con-
dition equations for a teetering rotor

ITM1 matrix operator specifying contribution

of the second blade root s+ate variables

to the second blade related boundary con-
dition equations for a teetering rotor

z(t) Fourier harmonic of 8(8,t), ft-lb/ft

.•(i) p.hase angle associated with a general

state variable inboard of the ith section
having a frequency of p/rev above that of
the main frequency, rad

r(e,t) applied torque per unit length acting on
control system rinq, ft-lb/ft

LýGm matrix operator specifying contribution
of fuselage hub state variables to the
mth blade related boundary condition
equations for a gimwballed rotor
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LýRji matrix operator specifying contribution
of fuselage hub state variables to the
mth blade related boundary condition
equations for an articulated, rigid, or
flexstrap rotor

[$T] matrix operator specifying contribution

of fuselage hub state variables to the
mth blade related boundary condition
equations for a teetering rotor

yi matrix operator specifying contribution
of fuselage structure hub state variables
to fuselage structure related moment and
force boundary condition equations

63 pitch-flap coupling angle, degrees

Kronecker's delta which equals unity if
a a is equal to b and otherwise is zero

60(8-6) Dirac delta function which is unity if 0
S-ois greater than or equal to 0 and other-

wise is zero

A I,_A2 ,A3 n frequency shifted blade discontinuity
n n n

variables which correspond to Xr, uyr,
and uzr variables, respectively, for a
flexstrap rotor and control torque, fea-

r+ thering and flap angle discontinuity
variables, respectively, for an articu-
lated rotor

m' T m n frequency shifted blade discontinuity
variables, as defined above, for the mth

(" m blade

S-A complex variable value of the iteration

CU, just completed during solution iteraticn

procedure

A. function equal to unity if (j-m) equals 1S3J-m-or if (j-rn) equals (1-Nb) for a oimballed

rotor and otherwise is zero
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complex variable value of the iteration
ALA just prior to the iteration just completed

during solution iteration procedure

ri1
matrix operator specifying contribution
of blade root variables to fuselage re-
lated moment and force boundary condition
equations for a gimballed rotor

R m matrix operator specifying contribution
of blade root variables to fuselage
related moment and force boundary condi-
tion equations for an articulated, rigid,
or flexstrap rotor

FAT matrix operator specifving contribution
of blade root variables tc fuselage of
blade root variables to fuselage related
mordent an(] force boundary condition eaua-
tions for a teetering rotor

( , kk frequency shifted blacle tornue, tor-
sional deflection, and flap anglec discon-

S(T-•k)m tinuities of the mth blade

AT, (AT) real-time torque applied to tbh mt' blade
T( by its associated control roe, .-3b

eigenvector correction column matrix, ele-
ment of eigenvector correction column
matrix, and reduced eigenvector column
matrix, respectively

e azimuthal independent coordinate for con-
trol system variable referred to fixed
control system coordinate system, rad

E (O,t) local bending slope of control system
ring, rad

O(Xj't) local bending slope at Xj as a function
of time, rad

"K k frequency shifted linear stiffness andI <k,m.
damping related to the mth control rod,
lb/ft
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trial eigenvector column matrix and an
element of the matrix

mass per unit length of control system
ring, slugs/ft

r •pi, 3.1415927

a real part of eigenvalue specifying blade
motion damping of the form et, 1/sec

Fourier harmonic of a(e,t), ft-lb/ft

G(et) applied moment per unit length acting on
control system ring, ft-lb/ft

E summation symbol

damping retardation time of mth control
rod spring-damper unit for rotor type
other than flexstrap, sec

azimuthal independent coordinate for con-
trol system variables referred to the
control system rotating coordinate system
"corresponding to the first blade, rad

¢,0, '1' finite angles defining orientation of
blade local coordinate system where 4)
corresponds to forward sweep, 0 corres-
ponds to downward coning, and T corres-
ponds to nose up twist and/or collective
angle of attack, rad

phase angle of mth blade relative first
blade, rad H

blade root slope vector for the mth bladedefined relative to the rotating coordi-

nate system of the mth blade, rad

fuselage structure hub slope vector de-
fined relative to the fixed shaft coordi-
nate system, rad A

'-A -A
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%(O,t) local twist angle of control system ring,
rad

(xi ,t) local twist angle at Xj as a function oftime, rad

torsional, flapwise, and chordwise bending

slopes, respectively, radI °
and chordwise bending slopes, respec-Sadchrwiebedn soes ese-x,4y,•z Laplace transformed torsional, flapwise,S~tively, rad

Tx ,Ty ,Iz Laplace transformed torsional flapwise,
and chordwise bending slopes, respec-
tively, at the blade tip, rad

4JXmovH ,Zm blade root torsional, flapwise, andchordwise bending slopes, respectively,

of the mth blade in its rotating shaft
coordinate system, rad

( Xm)k,(%Ym)k, k frequency shifted Laplace transformed
blade root torsional, flapwise, and

(ýZm)k chordwise bending slopes, respectively,
of the mth blade in its rotating shaft
coordinate system, rad

(' ,m)• k frequency shifted Laplace transformed

torsional, flapwise, and chordwise bend-
ii ing slopes, respectively, at the inboard

end of the ith section of mth blade, rad

,Xs,•Ysqzs fuselage structure torsional, flapwise,
nand chordwise bending slopes, respec-

tively, in the local fuselage coordinate
system at tail rotor hub, rad

xj azimuthal angle of jth spring-damper unit
supporting control system ring, rad

ip. azimuthal location of jth point used for
Fourier analysis of F(ýj), rad
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imaginary part of eigenvalue correspond-
ing to main frequency of tail rotor sys-tem, rad/sec 

•

rotor speed, rad/sec

denotes row matrix

[ J denotes rectangular matrix

denotes column matrix

I 
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